The Big Picture

Home > Other > The Big Picture > Page 29
The Big Picture Page 29

by Carroll, Sean M.

n on o

  on n t

  n o

  e lo h

  n t

  ca e t

  htio a

  e t ba

  n lboe. A

  e

  r an s t

  . A h

  s t

  y ot a

  hht “

  aer m

  t “. Fo

  m sot l

  sr b i

  t l kigek, ley

  re ” p

  yal‑ o

  ” pw sooistrlito

  d n e

  oobjv

  n eeovclotvev

  s ls o

  eik v

  s oe evbr t

  eill i

  r t m

  iar e

  m , i

  e

  d bt

  , ia tlls,

  18 16

  ob

  o ebyets t

  yh h

  s t e r

  h

  e wavu

  e r lue

  e f s o

  eun f c

  s octil

  f caosasis

  n i ca

  s tl m

  caypie

  l mcch

  ealla

  ch n

  a in

  y v cescr, j

  s u

  , j

  y s s

  ut t a

  sro s N

  t angl e

  s N w

  e

  y p t

  we otan a

  oke n

  n a d L

  n

  d aro a

  d Lu panlpacae t

  c

  d on h

  e t o

  h

  e p u

  oa g

  urth

  gi thc.t ular

  1917

  Bu

  B t t

  up h

  t tosehirete i

  rio s a ch

  e in o a

  s a ch

  n t n

  ah cne t

  c

  e ta h

  e tbla

  het w

  a. Ah

  t w eh

  s tn y

  eha o

  n y u l

  o

  t “mo

  u l o

  os k a

  ot lit i

  k ak t

  t iel, y

  ty o

  , y u

  o

  ” p ’uol’l s

  lsit e

  l si e i

  eo t s

  e i

  n e o

  t sv m

  oolve

  m w

  e h

  w

  s oe

  hvreee e

  rr tl

  e eisles

  m.ee, it

  2018

  Th

  ob i

  Thes s

  iy i

  s st

  s t u

  th auta

  e rito

  uln i

  oe s u

  n i

  s o n

  s u

  f cl s

  naasstasitsifs

  cayfiyn

  i

  l mg

  ne, t

  g o p

  , t

  chan u

  o pict i

  us t m

  t i, jus i

  t m lid

  t a ldy. Q

  y

  s Ne u

  . Q

  wt a

  uon

  a tnut

  n a m m

  und L e

  m ma ch

  eplaa

  chcn

  a in

  e tcsc

  h , a

  sout

  , aght.

  21 19

  lea

  e sat t

  sBuh

  t t e w

  h

  t thea

  e wry w

  ae i e t

  y w e

  e t ae

  s a ch ch i

  aanc t t

  ch ie t o p

  t tha h

  o p y

  h

  t w syhisc

  e s m

  cn y a

  s mo jao

  u lr

  o s t

  r

  oo a

  s t k

  a

  k a ikn

  i

  t i g t

  nt, yh

  g toehieu’r fi

  ill sr

  r fiesrt c

  se i o

  t ct sloloege

  m e c

  gewo

  e chu

  oe rusress

  e

  e else.

  2220

  in t

  in hte s

  h u

  e s

  Thb

  ui jbe

  s sc

  ei tc, tusa

  , at y

  sai s t

  ys

  o h

  t

  n i a

  h t

  a

  s u t

  t nhtseharetie a

  re

  sfyraie t

  re

  ng w

  t, to c

  wo oc

  o p m

  ou p

  m

  t i lpete

  t metiley d

  y

  dly idff

  i e

  ff

  . Q re

  u eran

  e t

  nt w

  t u a

  w yas

  y

  m m teh

  s t a

  h

  ch t

  aa tt nhticehs e, at

  2321

  stsattale o

  tea f a s

  e ost thy

  f a s sytset

  e w m e

  ea v

  m e

  y w o

  v lo

  e t vee

  va s o

  e v

  s o

  ch i e

  v r t

  e

  t t i

  r tm

  i

  o p e

  m

  h .eysics majors taking their first college courses

  2422

  O

  i n

  O

  n te k

  nh i

  e k ni

  e sud o

  nbjef e

  d oct v

  f e, ovsalou

  y t

  us ito

  t n h

  ohat a

  n ht pa

  h p

  perepn

  ee s w

  nare h

  s wt ehwn w

  eo c e

  n wo ’ree n

  r

  mpl o

  e nett o

  oel b

  t o

  y s

  bd esireffvreivrnieg t

  nnt h

  g t e s

  h

  way y

  e s syts

  s t et

  h m

  ea .

  m

  t the

  2523

  The

  Thsn t

  etath

  n t ehre

  e o er’s a

  e

  f a s n e

  s aysteq

  n e u

  q a

  u

  m etavito

  oln t

  ove h

  n t a

  h

  s o t t

  ave h

  t t e w

  h

  r tim a

  e we.vae f

  v u

  e f n

  u c

  n tciton

  o o

  n be

  ob yesy—

>   s t

  — hte S

  he ch

  Sc rhöd

  rö idnig

  n egre r

  2624

  eq

  e u

  q a

  u taiton

  o

  O , a

  nn ft

  , a

  e k e

  fti r

  en Au

  r A

  d o s

  u ts

  f ertir

  v aion p

  alutih

  n po y

  h syisc

  n h icasit

  sppEer

  t Enw

  r i

  w n

  i

  s whSech

  n S r

  ch

  n wö

  re d

  ö’r idnig

  n

  e n e

  go re, rw

  t obh

  , ws o

  her lva

  o li tanetr

  eg tbe

  r bh ca

  ee s m

  cays e

  mt eem.

  2725

  fafm

  a o

  m u

  o

  Th s f

  ue o

  s f

  n t r t

  oheo

  r tr roetr’utru

  s a irn

  i g ca

  n

  n equ t

  g caa s i

  tti n t

  s io h

  n t

  n t o

  hh u

  oa g

  u

  t th

  g t e

  h x

  t e

  e wp

  xa epvreirm

  i

  e fue

  m n

  e

  nct

  n sti. (

  so N

  . (n o

  N t r

  o

  obe e

  t rysael ca

  a— t t

  l ca st

  he , i

  s St s

  , ichh

  t s o

  h

  rö u

  od luid

  nger

  2826

  be e

  b em

  e eq p

  mu h

  pata

  hi saoiszinezde

  , a .d) H

  fte e

  ) H re

  r Ae i

  rust i

  e itr s

  t ii , i

  sa n i

  , i

  n p t

  n ihs m

  tysi o

  s mcisot g

  s e

  t g

  t E n

  er en

  w reiarl f

  a

  n So

  l f rom

  r

  chr :

  mödinger, who later became

  2927

  famous for torturing cats in thought experiments. (Not real cats, it should

  3028

  be emphasized.) Here i i

  t is, i t Ψ

  n it  

  s mos Ĥ 

  t ge Ψ

  ne r . al form:

  31 29

  3230

  ItI’s q

  t u

  s q iute b

  t e

  e b aeuatuitfiufl i

  u n i

  l i t

  n is w

  t a

  s w i ya. Th

  y

   e s

  . Th y

  e sm

  y b

  mobl 

  ol 

  Ψ re

  r p

  e re

  pr seesn

  e t

  n st the

  s th qu

  e q a

  u n

  a tnutm

  u

  m

  t Ψ   Ĥ  Ψ  .

  33 31

  stsattaet. Th

  e. e

  The left

  le -ft h‑ a

  h n

  a d s

  n i

  d sde o

  d f t

  e o h

  f t e e

  h q

  e e ua

  q t

  ua iton a

  o s

  n a kss “

  k H

  s “ o

  H w i

  o s t

  w i h

  s t e s

  h t

  e s attae c

  t h

  e c a

  h n

  a g

  n ignig

  n g

  3432

  ov

  o evr t

  e i

  r tm

  iIt’e

  m ?” Th

  es quit e

  ?” Th r

  e

  e b i regiah

  gut-

  hti h‑ fahun

  a d s

  n

  l i i

  d s

  n i d

  t e p

  ds w r

  e paoryvoivded

  . Th s a

  ee s n a

  s aym n

  n ab snow

  sl e

  w re

  Ψ, b

  r  y d

  , b repo

  y dr ioenisg a c

  nent e

  g a c

  s t rehtratian o

  i

  e qua p

  n on -p‑tum

  35S33

  ereartasito

  tan

  ot o

  ne. n

  o t

  n h

  t

  The e s

  he

  le t

  sft at‑ taheta i

  ent ise

  td sl

  seif.ld I

  f. t

  I ’

  e os

  t p

  f t a

  s ph raarla

  e e le

  q l t

  el

  ua o

  tti N

  oo e

  N w

  e

  n as t

  wk otn

  o

  s “ ’s f

  n s

  H a

  fo m

  a o

  m

  w i u

  os ts “

  ush f

  “ of

  e str

  o crate e

  cee cq

  ehua

  qanl

  ua slg sing

  36N

  34

  over time?” The right‑ hand side provides an answer, by doing a certain op‑

  35S

  eration on the state itself. It’s parallel to Newton’s famous “force equals

  36N

  16

  1 4

  6 4

  1 6 4

  Big Picture - UK final proofs.indd 164

  20/07/2016 10:02:44

  9780525954828_BigPicture_i-x_1-470_4P.indd 164

  3/30/16 10:10 PM

  9780525954828_BigPicture_i-x_1-470_4P.indd 164

  3/30/16 10:10 PM

  t h E Q uA n t u M R E A l M

  mass times acceleration,” in which forces determine how the system changes

  01

  through time.

  02

  Evolution according to the Schrödinger equation is very much like the

  03

  evolution of a state in classical mechanics. It is smooth, reversible, and com-

  04

  pletely deterministic; Laplace’s Demon would have no problem predicting

  05

  what the state would be in the past and future. If that were all we had to the

  06

  stor
y, quantum mechanics wouldn’t be problematic.

  07

  But there is also an entirely different way the quantum state can evolve,

  08

  according to the textbook treatment: namely, when it is observed. In that

  09

  case, we teach our undergraduates, the wave function “collapses,” and we

  10

  obtain some particular measurement outcome. The collapse is sudden, and

  11

  the evolution is nondeterministic— knowing what the state was before, you

  12

  can’t perfectly predict what the state will be afterward. All you have are

  13

  probabilities.

  14

  Despite the appearance of probabilities, the predictions of quantum me-

  15

  chanics can be extraordinarily precise. For example, we can measure the

  16

  strength of the electromagnetic interaction by one kind of experiment, such

  17

  as how an atom recoils when it emits a photon. Then we can use that mea-

  18

  surement to predict the outcome of a different experiment, such as how

  19

  fast electrons precess in a magnetic field. Finally, we can compare that

  20

  prediction to an actual observation. The resulting agreement is breathtak-

  21

  ingly good:

  22

  23

  Observation/ Prediction = 1.000000002.

  24

  25

  The observed and predicted values aren’t exactly the same, both because

  26

  of experimental error and because of theoretical approximations. But the

  27

  lesson is clear: quantum mechanics isn’t some loosey- goosey, anything- goes

  28

  kind of operation. It is relentlessly specific and unforgiving.

  29

  30

  31

  32

  33

  34

  S35

  N36

  165

  Big Picture - UK final proofs.indd 165

  20/07/2016 10:02:44

  01

  02

  03

  21

  04

  05

  Interpreting Quantum Mechanics

  06

  07

  08

  09

  10

  11

  12

  13

  14

  15

  16

  17

  W hat really bothers us about quantum mechanics is that the

  word “observer” appears in the theory at all.

  What counts as an “observer” or an “observation” anyway?

  Does a microscope count, or does a conscious human being have to be using

  18

  it? What about a squirrel, or a video camera? What if I just glance at the

  19

  thing rather than observing it closely? When exactly does the “wave func-

  20

  tion collapse” take place? (So you’re not kept in suspense, almost no modern

  21

  physicist thinks that “consciousness” has anything whatsoever to do with

  22

  quantum mechanics. There are an iconoclastic few who do, but it’s a tiny

  23

  minority, unrepresentative of the mainstream.)

  24

  Together these issues are known as the measurement problem of quan-

  25

  tum mechanics. After fretting about it for decades, physicists still don’t

  26

  agree on how to address it.

  27

  They have ideas. One approach is to suggest that while the wave func-

  28

  tion plays an important role in predicting experimental outcomes, it doesn’t

  29

  actually represent physical reality. It might be that there is a deeper way of

  30

  describing the world, in addition to the wave function, in terms of which

  31

  the evolution would be in principle completely predictable. This possibility

  32

  is sometimes called the “hidden variables” approach, since it suggests that

  33

  we just haven’t yet pinpointed the real way to best describe the state of a

 

‹ Prev