1–200 years
Groundwater
Shallow
10–100 years
Deep
100–10,000 years
Oceans
1000 years
Glaciers
100–800,000 years
Mantle
Millions of years
Carbon5 in:
5
Atmosphere-ocean system
100–1000 years
Soils
25 years
Land plants
5–10 years
Limestone
10 million years
Sea salt (sodium ions)
70 million years
3
Mixing Time
Global ocean
ca. 1500 years
2
Troposphere
1 year
5
(lower part of atmosphere)
4. University Corporation for Atmospheric Research, Center for Science Education,
2011. The Water Cycle. https:// scied .ucar .edu /longcontent /water -cycle.
5. Kump, L., Kasting, J., and Crane, R., 1999. The Earth System. Englewood Cliffs, NJ: Prentice-Hall. pp. 134, 146.
C . V E L O C I T I E S A N D R AT E S O F C H A N G E
Geologic Average
Anthropocene Rate
Chapter
Plate motions
Background rate
1–10 cm/yr
Same
3
In earthquakes
(0.4–4 in./yr)
3
1 m/s (3ft/sec)
Rock uplift in
0.1–0.5 cm/yr
Same
3
mountain belts
(0.04–2 in./yr)
Isostatic rebound Up to 1 cm/yr
Same
3
due to erosion or (0.4 in./yr)
deglaciation
Land subsidence
from withdrawal —
Up to 2 cm/yr
3
of oil, gas, or
(0.8 in./yr)
groundwater
Erosion
0.1 mm/yr (0.004 in./yr) ca. 1 mm/yr
3, 5
(but varies with relief
(0.04 in./yr)6
and climate)
Sea level rise
Holocene average
Since 1900: 1.7 mm/yr
5, 6
(last 10,000 years):
(0.067 in./yr)7
0.1 mm/yr (0.004 in./yr) Since 1990:
ca. 3.0 mm/yr
(0.1 in./yr)
Projected for 2100:
14 mm/yr (0.5 in./yr)8
CO2 emissions
(as billions of
Volcanoes: 0.2 Gt/yr
Human emissions:
5
tons, Gt, of
10 Gt/yr
carbon, C)9
Increase in
Since last glacial
Since 1800: 0.5 ppm/yr
5
atmospheric CO2 maximum (18,000 years Since 1960: 1.5 ppm/yr
ago): 0.006 ppm/yr
Since 2000: 2.0 ppm/yr
6. Wilkinson, B., 2005. Humans as geologic agents. Geology, 33, 161–164.
doi:10.1130/G21108.1.
7. Church, J., and White, N., 2011. Sea level rise from the late 19th to early 21st century. Surveys in Geophysics, 32, 585–602. doi:10.1007/s10712-011-9119-1.
8. US Global Change Research Program, 2014. Third National Climate Assessment.
http:// www .globalchange .gov /nca3 -downloads -materials.
9. Gerlach, T., 2011. Volcanic vs. anthropogenic carbon dioxide. EOS, 92, 201–208.
doi:10.1029/2011EO240001.
D . C YC L E S A N D R E C U R R E N C E I N T E R VA L S
Cycle Length
Chapter
Supercontinent cycle (Wilson cycle);
ca. 500 million years
3
time between assembly and breakup
Milankovitch orbital cycle
Eccentricity
96,000 and 413,000 years
5
Obliquity
41,000 years
Precession
23,000 years
Dansgaard-Oeschger cycle:
(Pleistocene cooling/warming related
1500 years
5
to ocean circulation)
El Niño-Southern Oscillation (ENSO):
3–5 years
5
semiperiodic alternation in location of
warm water masses in Pacific Ocean;
affects global weather
Madden-Julian oscillation:
1–3 months
5
repeating eastward migration of air
masses over the Indian and Pacific
Oceans; controls precipitation on land
adjacent to both oceans
Earth’s rotation
4
Modern
24 hours
Devonian
22 hours
Archean
18 hours
Recurrence time of supereruption at
Yellowstone (last one 640,000 years ago)
ca. 700,000 years
2, 3
Recurrence time of M9 earthquakes on
Cascadia subduction zone (last in 1700)
200–800 years
3
Global earthquake recurrence time
(long-term averages)
3
Magnitude 9
10 years
Magnitude 8
1 year
Magnitude 7
1 month
Magnitude 6
1 week
a,
s
sify
aun ian
bites)
lter- iver
tion;
year
s
ath/
an f
za
ambr
ian
ilo
ent em
m
sms
cy
sion
ated
e fi s d
an
2 for llion
sify
im
in
m
gani
osaur
fter ega
diacar en C
ambr gani
ar
osyst
in
A L
E th explo
C or (e.g., tr dec
M feeder
Per ec reor low O >1 mi
D diver
ces
tion
e uc
y
lcanic
equen
zon estr
O D
Yes—b vo gases
ons
s
s
s
d C
cean noxia
O A
Ye
Ye
Ye
ity
ses an
cean cid
s
s
au
O A
Ye
Ye
h
y: C
evel
h
o
o
o
or
y low
h t o hig
h t
h
ist
ig
ig
ow t
Sea L
Ver to hig
H low t
H low
L hig
’s H
y
th
e
e en
g
y
ar
e
t ic
t
el
d dr
ate ge
> o
, th
mth
up ollowed apid min
up
lim han
xtrem
ar
br
ar
br oling
old t
rm
ot an
C C
E cold extrem w
A age f by r w
A co
C extrem wa
H
5
4
rises in E
se
6
7
ded
oal
e
. +4)
d/ g c
al C
3
an
ycle l
osition
e
cle bation:
ly en eth
ial >
an
nin
ent
tur genic 13C)
ate relea 13C = −10)
genic
omp 13C = ca
ates an
13C = −8)
13C = −3)
io
io
eth
C Cy Per B (Δδ
Possib by m hydr (Δδ
ot wel
ype of C c
B C bur dec (Δδ
M hydr or bur seams (Δδ
(Δδ
g:
e t
nvironm
ation
om ces, but n
lts)
ed
raps
lts
E
oolin str
asa
asa
cle bation:
ban ain
ian T
al ic
tur
tonic
ial c eque lcanic ssions
bably s ur
er od b
entr tlant od b
C Cy Per Volcanic/ Tec
Init C s > vo emi
Pro dist constr
Sib (flo
C A flo
a s
a s
a s
a s
er ie
er ie
er ie
er ie
n—
ec
ec
ec
ec
ction ity2
evere
APPENDIX III:
now y s
xtin
nk
E Sever
U likel
57% of gen 86% of sp
35% of gen 75% of sp
56% of gen 95% of sp
47% of gen 80% of sp
a
a
a
an
a
a
1
ian
mi
T
ic
an
er
N
ball
ction
ction
ction
Triassic
E
th
ar
d- rdov
te evoni
nd-P
nd-
EV
Snow E 750–570 M
En O extin (#2) 440 M
La D extin (#4) 365 M
E extin (#1) 250 M
E (#3) 200 M
sh
ani s);
p- em
-13”)
o
s v ird s
ajor
ogy, 240,
d dee
s
ity of
a C
e; m
osyst
col
aximum
osaur
mal sify
ge
ever
a delt
. A shift t
oe
in
m
o ic d an
an
e s
al M
D (except b ma diver
N lan sea ec ch
? ?
delt
bon
alae
mer
ogy, P
δ13C (“
xed) car
ol
e Th
e
t?
sure of th
i:10.1130/G30683.1.
in
ac
eses.
ea
ater ized
lly fi
limat
ocen
ybe—
w
s
alue Δ
s a m
oc
e-E
Ma chlor from sea vapor in imp
Ye
arenth
e v
etica
alae
cen
d thu
dard] × 1000.an d). Th
y, P
aleo
s
ted in p
—an
ite st
san
e P
Ye
dica
alue
lc
ou
photosynth
ogy, 38, 387–390. do ol g th
s in
d v
in
er th
ogeograph
Ge
genic (
s
s
s
ity i
ature09678.
ts p
io
Palae
vel.
Ye
Ye
Ye
groun
ar
ever
ack
ssions.
pe,
iations dur
se of b
ear le
uro
ar
ise
ise
dard)/ 13C/12C ca
s v
e, 324, 237–238.
ank in s
i: 10.1038/n
an
sured in p
O2 emi
n E
e r
rom a b
ea
er
atur
tes relea
ycle
N
apid r
apid r
ite st
e 100,000 y
s.
R
R
ater f
lc
outh
w
dica
genic C
gic c
ie
io
d S
t th
lo
ur
ctions, th
ea
atio are m
s in
ent
,
O2)
sm a
ydro
xtin
alue
al an
old
en m ar
g
g
e, 471, 51–57. do
d h
lcani
wo c
t c ash
O2 over b
entr
l (
d (C
min
min
ass e
atur
d 12C) in s
le − 13C/12C ca
el 2), th g w io
ar
ast t
apid ar
t m
N
e 13C/12C r
lt vo
egative v
bon an
e l
Shor sp SO lon per
W spike
R w
rea
lcanic C
an of C
asa
rived?
/>
ite samp
ore n
lc
evoni
i:10.1038/367231a0.
od b
s of car
o m
O2 in th
d/ oal
e five g
y ar
ord
sotopes (13C an
iations in th
ce of vo
e D
epsl.2011.08.045.
g c
ar
an
ith flo
ic C
e
ion
or th
lread
her
nin
uel st
bon i
s; v
ial rec
13C = −1)
an ates an
13C = −3)8
13C = −2)9
a). F
s [(13C/12C ca
e. A shift t
ction w
str
osp
eth
M
ction a
alue
im
e domin
raphy of th
reer
tm
(Δδ
M hydr or bur seams (Δδ
Fossil f combu (Δδ
able car
ed a
xtin
i:10.1016/j.
sent (
xtin
eger v
atig
e, 367, 231–236, do
d t
val of t
d/or th
ass e
ses
ic
ass e
e an
atio of a
e pre
s defin
er
atur
in
raps
lts
atio of st
ave int
ial an
. N
ar
ite
tlant
ixth m
e r
ar int
sotope str
t relea
-13”) i
rom ates
asa
ore th
e s
ces h
ul
ction
Triassic m
ac
can T
th A
ef
a C
tic
bon i
d-
ion m
e 13C/12C r
eteor
2 f bon ec
or od b
s b
bon bur
as th
ge in th
eren
ar
ar
xtin
ters, 311, 82–92. do
M imp CO car D
N flo
ear
an
delt
iff
e en
solut
et
e d
re
e L
e ch
13C (“
g th
h-
nc
ord of th
a s
. δ
at th
ganic car
., 2006. C
atin
er ie
a hit
l., 2011. H
o-Triassic e
ec
er
d
llions of y
t a
ycle
o th
alue over a p
rel
y Scie
tes or
i, M
m
led hig
or
ore rec
., e
sure of th
er
13C v
oup
ce c
p-ocean
ction
groun
ea
sed s
dica
e P
y, A
bon c
e δ
ee aminif
xtin
iven in mi
s u
s in
oachimsk
40% of gen 76% of sp
D for hard
E rates 100–100X back
s g
g.
nosk
s a m
e car
alue
l., 2010. C
.or
d J
Timefulness Page 22