Timefulness

Home > Other > Timefulness > Page 22
Timefulness Page 22

by Marcia Bjornerud

1–200 years

  Groundwater

  Shallow

  10–100 years

  Deep

  100–10,000 years

  Oceans

  1000 years

  Glaciers

  100–800,000 years

  Mantle

  Millions of years

  Carbon5 in:

  5

  Atmosphere-ocean system

  100–1000 years

  Soils

  25 years

  Land plants

  5–10 years

  Limestone

  10 million years

  Sea salt (sodium ions)

  70 million years

  3

  Mixing Time

  Global ocean

  ca. 1500 years

  2

  Troposphere

  1 year

  5

  (lower part of atmosphere)

  4. University Corporation for Atmospheric Research, Center for Science Education,

  2011. The Water Cycle. https:// scied .ucar .edu /longcontent /water -cycle.

  5. Kump, L., Kasting, J., and Crane, R., 1999. The Earth System. Englewood Cliffs, NJ: Prentice-Hall. pp. 134, 146.

  C . V E L O C I T I E S A N D R AT E S O F C H A N G E

  Geologic Average

  Anthropocene Rate

  Chapter

  Plate motions

  Background rate

  1–10 cm/yr

  Same

  3

  In earthquakes

  (0.4–4 in./yr)

  3

  1 m/s (3ft/sec)

  Rock uplift in

  0.1–0.5 cm/yr

  Same

  3

  mountain belts

  (0.04–2 in./yr)

  Isostatic rebound Up to 1 cm/yr

  Same

  3

  due to erosion or (0.4 in./yr)

  deglaciation

  Land subsidence

  from withdrawal —

  Up to 2 cm/yr

  3

  of oil, gas, or

  (0.8 in./yr)

  groundwater

  Erosion

  0.1 mm/yr (0.004 in./yr) ca. 1 mm/yr

  3, 5

  (but varies with relief

  (0.04 in./yr)6

  and climate)

  Sea level rise

  Holocene average

  Since 1900: 1.7 mm/yr

  5, 6

  (last 10,000 years):

  (0.067 in./yr)7

  0.1 mm/yr (0.004 in./yr) Since 1990:

  ca. 3.0 mm/yr

  (0.1 in./yr)

  Projected for 2100:

  14 mm/yr (0.5 in./yr)8

  CO2 emissions

  (as billions of

  Volcanoes: 0.2 Gt/yr

  Human emissions:

  5

  tons, Gt, of

  10 Gt/yr

  carbon, C)9

  Increase in

  Since last glacial

  Since 1800: 0.5 ppm/yr

  5

  atmospheric CO2 maximum (18,000 years Since 1960: 1.5 ppm/yr

  ago): 0.006 ppm/yr

  Since 2000: 2.0 ppm/yr

  6. Wilkinson, B., 2005. Humans as geologic agents. Geology, 33, 161–164.

  doi:10.1130/G21108.1.

  7. Church, J., and White, N., 2011. Sea level rise from the late 19th to early 21st century. Surveys in Geophysics, 32, 585–602. doi:10.1007/s10712-011-9119-1.

  8. US Global Change Research Program, 2014. Third National Climate Assessment.

  http:// www .globalchange .gov /nca3 -downloads -materials.

  9. Gerlach, T., 2011. Volcanic vs. anthropogenic carbon dioxide. EOS, 92, 201–208.

  doi:10.1029/2011EO240001.

  D . C YC L E S A N D R E C U R R E N C E I N T E R VA L S

  Cycle Length

  Chapter

  Supercontinent cycle (Wilson cycle);

  ca. 500 million years

  3

  time between assembly and breakup

  Milankovitch orbital cycle

  Eccentricity

  96,000 and 413,000 years

  5

  Obliquity

  41,000 years

  Precession

  23,000 years

  Dansgaard-Oeschger cycle:

  (Pleistocene cooling/warming related

  1500 years

  5

  to ocean circulation)

  El Niño-Southern Oscillation (ENSO):

  3–5 years

  5

  semiperiodic alternation in location of

  warm water masses in Pacific Ocean;

  affects global weather

  Madden-Julian oscillation:

  1–3 months

  5

  repeating eastward migration of air

  masses over the Indian and Pacific

  Oceans; controls precipitation on land

  adjacent to both oceans

  Earth’s rotation

  4

  Modern

  24 hours

  Devonian

  22 hours

  Archean

  18 hours

  Recurrence time of supereruption at

  Yellowstone (last one 640,000 years ago)

  ca. 700,000 years

  2, 3

  Recurrence time of M9 earthquakes on

  Cascadia subduction zone (last in 1700)

  200–800 years

  3

  Global earthquake recurrence time

  (long-term averages)

  3

  Magnitude 9

  10 years

  Magnitude 8

  1 year

  Magnitude 7

  1 month

  Magnitude 6

  1 week

  a,

  s

  sify

  aun ian

  bites)

  lter- iver

  tion;

  year

  s

  ath/

  an f

  za

  ambr

  ian

  ilo

  ent em

  m

  sms

  cy

  sion

  ated

  e fi s d

  an

  2 for llion

  sify

  im

  in

  m

  gani

  osaur

  fter ega

  diacar en C

  ambr gani

  ar

  osyst

  in

  A L

  E th explo

  C or (e.g., tr dec

  M feeder

  Per ec reor low O >1 mi

  D diver

  ces

  tion

  e uc

  y

  lcanic

  equen

  zon estr

  O D

  Yes—b vo gases

  ons

  s

  s

  s

  d C

  cean noxia

  O A

  Ye

  Ye

  Ye

  ity

  ses an

  cean cid

  s

  s

  au

  O A

  Ye

  Ye

  h

  y: C

  evel

  h

  o

  o

  o

  or

  y low

  h t o hig

  h t

  h

  ist

  ig

  ig

  ow t

  Sea L

  Ver to hig

  H low t

  H low

  L hig

  ’s H

  y

  th

  e

  e en

  g

  y

  ar

  e

  t ic

  t

  el

  d dr

  ate ge

>   o

  , th

  mth

  up ollowed apid min

  up

  lim han

  xtrem

  ar

  br

  ar

  br oling

  old t

  rm

  ot an

  C C

  E cold extrem w

  A age f by r w

  A co

  C extrem wa

  H

  5

  4

  rises in E

  se

  6

  7

  ded

  oal

  e

  . +4)

  d/ g c

  al C

  3

  an

  ycle l

  osition

  e

  cle bation:

  ly en eth

  ial >

  an

  nin

  ent

  tur genic 13C)

  ate relea 13C = −10)

  genic

  omp 13C = ca

  ates an

  13C = −8)

  13C = −3)

  io

  io

  eth

  C Cy Per B (Δδ

  Possib by m hydr (Δδ

  ot wel

  ype of C c

  B C bur dec (Δδ

  M hydr or bur seams (Δδ

  (Δδ

  g:

  e t

  nvironm

  ation

  om ces, but n

  lts)

  ed

  raps

  lts

  E

  oolin str

  asa

  asa

  cle bation:

  ban ain

  ian T

  al ic

  tur

  tonic

  ial c eque lcanic ssions

  bably s ur

  er od b

  entr tlant od b

  C Cy Per Volcanic/ Tec

  Init C s > vo emi

  Pro dist constr

  Sib (flo

  C A flo

  a s

  a s

  a s

  a s

  er ie

  er ie

  er ie

  er ie

  n—

  ec

  ec

  ec

  ec

  ction ity2

  evere

  APPENDIX III:

  now y s

  xtin

  nk

  E Sever

  U likel

  57% of gen 86% of sp

  35% of gen 75% of sp

  56% of gen 95% of sp

  47% of gen 80% of sp

  a

  a

  a

  an

  a

  a

  1

  ian

  mi

  T

  ic

  an

  er

  N

  ball

  ction

  ction

  ction

  Triassic

  E

  th

  ar

  d- rdov

  te evoni

  nd-P

  nd-

  EV

  Snow E 750–570 M

  En O extin (#2) 440 M

  La D extin (#4) 365 M

  E extin (#1) 250 M

  E (#3) 200 M

  sh

  ani s);

  p- em

  -13”)

  o

  s v ird s

  ajor

  ogy, 240,

  d dee

  s

  ity of

  a C

  e; m

  osyst

  col

  aximum

  osaur

  mal sify

  ge

  ever

  a delt

  . A shift t

  oe

  in

  m

  o ic d an

  an

  e s

  al M

  D (except b ma diver

  N lan sea ec ch

  ? ?

  delt

  bon

  alae

  mer

  ogy, P

  δ13C (“

  xed) car

  ol

  e Th

  e

  t?

  sure of th

  i:10.1130/G30683.1.

  in

  ac

  eses.

  ea

  ater ized

  lly fi

  limat

  ocen

  ybe—

  w

  s

  alue Δ

  s a m

  oc

  e-E

  Ma chlor from sea vapor in imp

  Ye

  arenth

  e v

  etica

  alae

  cen

  d thu

  dard] × 1000.an d). Th

  y, P

  aleo

  s

  ted in p

  —an

  ite st

  san

  e P

  Ye

  dica

  alue

  lc

  ou

  photosynth

  ogy, 38, 387–390. do ol g th

  s in

  d v

  in

  er th

  ogeograph

  Ge

  genic (

  s

  s

  s

  ity i

  ature09678.

  ts p

  io

  Palae

  vel.

  Ye

  Ye

  Ye

  groun

  ar

  ever

  ack

  ssions.

  pe,

  iations dur

  se of b

  ear le

  uro

  ar

  ise

  ise

  dard)/ 13C/12C ca

  s v

  e, 324, 237–238.

  ank in s

  i: 10.1038/n

  an

  sured in p

  O2 emi

  n E

  e r

  rom a b

  ea

  er

  atur

  tes relea

  ycle

  N

  apid r

  apid r

  ite st

  e 100,000 y

  s.

  R

  R

  ater f

  lc

  outh

  w

  dica

  genic C

  gic c

  ie

  io

  d S

  t th

  lo

  ur

  ctions, th

  ea

  atio are m

  s in

  ent

  ,

  O2)

  sm a

  ydro

  xtin

  alue

  al an

  old

  en m ar

  g

  g

  e, 471, 51–57. do

  d h

  lcani

  wo c

  t c ash

  O2 over b

  entr

  l (

  d (C

  min

  min

  ass e

  atur

  d 12C) in s

  le − 13C/12C ca

  el 2), th g w io

  ar

  ast t

  apid ar

  t m

  N

  e 13C/12C r

  lt vo

  egative v

  bon an

  e l

  Shor sp SO lon per

  W spike

  R w

  rea

  lcanic C

  an of C

  asa

  rived?
/>
  ite samp

  ore n

  lc

  evoni

  i:10.1038/367231a0.

  od b

  s of car

  o m

  O2 in th

  d/ oal

  e five g

  y ar

  ord

  sotopes (13C an

  iations in th

  ce of vo

  e D

  epsl.2011.08.045.

  g c

  ar

  an

  ith flo

  ic C

  e

  ion

  or th

  lread

  her

  nin

  uel st

  bon i

  s; v

  ial rec

  13C = −1)

  an ates an

  13C = −3)8

  13C = −2)9

  a). F

  s [(13C/12C ca

  e. A shift t

  ction w

  str

  osp

  eth

  M

  ction a

  alue

  im

  e domin

  raphy of th

  reer

  tm

  (Δδ

  M hydr or bur seams (Δδ

  Fossil f combu (Δδ

  able car

  ed a

  xtin

  i:10.1016/j.

  sent (

  xtin

  eger v

  atig

  e, 367, 231–236, do

  d t

  val of t

  d/or th

  ass e

  ses

  ic

  ass e

  e an

  atio of a

  e pre

  s defin

  er

  atur

  in

  raps

  lts

  atio of st

  ave int

  ial an

  . N

  ar

  ite

  tlant

  ixth m

  e r

  ar int

  sotope str

  t relea

  -13”) i

  rom ates

  asa

  ore th

  e s

  ces h

  ul

  ction

  Triassic m

  ac

  can T

  th A

  ef

  a C

  tic

  bon i

  d-

  ion m

  e 13C/12C r

  eteor

  2 f bon ec

  or od b

  s b

  bon bur

  as th

  ge in th

  eren

  ar

  ar

  xtin

  ters, 311, 82–92. do

  M imp CO car D

  N flo

  ear

  an

  delt

  iff

  e en

  solut

  et

  e d

  re

  e L

  e ch

  13C (“

  g th

  h-

  nc

  ord of th

  a s

  . δ

  at th

  ganic car

  ., 2006. C

  atin

  er ie

  a hit

  l., 2011. H

  o-Triassic e

  ec

  er

  d

  llions of y

  t a

  ycle

  o th

  alue over a p

  rel

  y Scie

  tes or

  i, M

  m

  led hig

  or

  ore rec

  ., e

  sure of th

  er

  13C v

  oup

  ce c

  p-ocean

  ction

  groun

  ea

  sed s

  dica

  e P

  y, A

  bon c

  e δ

  ee aminif

  xtin

  iven in mi

  s u

  s in

  oachimsk

  40% of gen 76% of sp

  D for hard

  E rates 100–100X back

  s g

  g.

  nosk

  s a m

  e car

  alue

  l., 2010. C

  .or

  d J

 

‹ Prev