oxygen 2.5 billion years ago. Nature, 448, 1033– 1036. doi:10.1038/nature06058.
13. Johnson, T., et al., 2014. Delamination and recycling of Archean crust caused
by gravity instabilities. Nature Geoscience, 7, 47– 52. doi:10.1038/ngeo2019.
14. Lyons, T., Reinhard, C., and Planavsky, N., 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 307, 506– 511. doi:10.1038/nature13068.
15. Planavsky, N., et al., 2014. Low mid- Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346, 635– 638. doi:10.1126/science.1258410.
16. Reinhard, C., et al., 2016. Evolution of the global phosphorus cycle, Nature, doi:10.1038/nature20772.
17. Wolf, E., and Toon, O., 2015. Delayed onset of runaway and moist green-
house climates for Earth. Geophysical Research Letters, 41, 167– 172.
doi:10.1002/2013GL058376. The good news is that this study extended the
habitable period from the truly depressing estimates of 170– 650 million years!
18. Planavsky, N., et al., 2010. The evolution of the marine phosphate reservoir.
Nature, 467, 1088– 1090.
19. Erwin, D., et al., 2011. The Cambrian conundrum: Early divergence and later
ecological success in the early history of animals. Science, 334, 1091– 1097.
doi:10.1126/science.1206375.
20. Kelvin’s phrase, in a letter to John Phillips. Quoted in Morrell, J., 2001. The age of the Earth in the twentieth century: A problem (mostly) solved. In Lewis, C.,
and Knell, S., The Age of the Earth from 4004 BC to AD 2002. Geological Society of London Special Publication 190, 85– 90.
21. McCallum, M., 2007. Amphibian decline or extinction? Current declines
dwarf background extinction rate. Journal of Herpetology, 41, 483– 491.
doi:10.1670/0022– 1511.
22. Raup, D., and Sepkoski, J., 1984. Periodicity of extinctions in the geologic past.
Proceedings of the National Academy of Sciences, 81, 801– 805.
notes to chapter 5 199
23. Whitman, W., Coleman, D., and Wiebe, W., 1998. Prokaryotes: The unseen
majority. Proceedings of the National Academy of Sciences, 95, 6578– 6583.
5 . G R E AT A C C E L E R AT I O N S
1. Cooper, K., and Kent, A., 2014. Rapid remobilization of magmatic crystals kept
in cold storage. Nature, 506, 480– 483. doi:10.1038/nature12991.
2. Webber, K., et al., 1999. Cooling rates and crystallization dynamics of shallow
level pegmatite- aplite dikes, San Diego County, California. American Mineralo-
gist, 84, 718– 717.
3. Zalasiewicz, J., et al., 2008. Are we now living in the Anthropocene? GSA Today, 18(2), 4– 8. doi:10.1130/GSAT01802A.1.
4. Lambeck, K., et al., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111, 15296– 15303. doi:10.1073/pnas.1411762111.
5. Center for Biological Diversity, http:// www .biologicaldiversity .org /programs
/biodiversity /elements _of _biodiversity /extinction _crisis/.
6. Gerlach, T., 2011. Volcanic vs. anthropogenic carbon dioxide. Eos, Transactions, American Geophysical Union, 92, 201– 203.
7. Rockström, J., et al., 2009. A safe operating space for humanity. Nature, 461, 472– 475. doi:10.1038/461472a.
8. Haberl, H., et al., 2007. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystem. Proceedings of the National Academy of Sciences, 104, 12942– 12947. doi:10.1073/pnas0704243104.
9. Walker, M., et al., 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP
ice core, and selected auxiliary records. Journal of Quaternary Science, 24, 3– 17.
doi:10.1002/jqs.1227.
10. Thompson, L., et al., 2013. Annually resolved ice core records of tropical cli-
mate variability over the past 1800 Years. Science, 340, 945– 950. doi:10.1126/
science.123421.
11. Zhang, D., et al., 2011. The causality analysis of climate change and large- scale human crisis. Proceedings of the National Academy of Sciences, 108, 17296– 17301.
doi:10.1073/pnas.1104268108.
12. Hsiang, S., Burke, M., and Michel, E., 2013. Quantifying the influence of climate on human conflict, Science, 341, 1212– 1228. doi:10.1126/science.1235367.
13. Milly, P., et al., 2008. Stationarity is dead: Whither water management? Science, 319, 573– 574. doi:10.1126/science.1151915.
14. Alley, R., 2000. The Two- Mile Time Machine: Ice Cores, Abrupt Climate Change, and our Future. Princeton, NJ: Princeton University Press, p. 126.
15. Berger, A., 2012. A brief history of the astronomical theories of paleoclimate.
In Berger A., Mesinger F., and Sijacki, D. (eds.), Climate Change. New York: Springer, p. 107– 128. doi:10.1007/978- 3- 7091- 0973- 1_8.
200 Notes to ch a pter 5
16. Arrhenius, S., 1896. On the influence of carbonic acid in the air upon the tem-
perature of the ground. Philosophical Magazine and Journal of Science, ser. 5, vol.
41, 237– 276.
17. Hays, J., Imbrie, J., and Shackleton, N., 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121– 1132.
18. A provocative segment in Neil deGrasse Tyson’s 2014 excellent TV series Cosmos depicts a city as it would look if CO2 were a purple gas. Carbon emissions would
then be considered a public menace.
19. The relative amount of 13C and 12C in a geologic sample is typically given in terms of the deviation of the 13C/12C ratio in a given rock (usually limestone) from an
international standard (a “reference” piece of calcite). This deviation is called
δ13C (delta C- 13) and defined as
[(13C/12C sample −13C/12C standard)/ 13C/12C standard] × 1000.
(The factor of 1000 is used so that the differences have integer values; vari-
ations in the 13C/12C ratio are measured in parts per thousand). The change in
the δ13C value in rocks over some period of time— denoted Δδ13C (delta delta
C- 13)— is a measure of the severity of disturbance to the carbon cycle. A negative value of Δδ13C indicates release of biogenic (photosynthetically fixed) carbon. A
positive value indicates organic carbon burial and/or the dominance of volcanic
CO2 over biogenic CO2 emissions. See also Appendix III.
20. McInerney, F., and Wing, S., 2011. The Paleocene- Eocene Thermal Maximum:
A perturbation of carbon cycle, climate, and biosphere with implications for the
future. Annual Reviews of Earth and Planetary Sciences, 39, 489– 516.
21. Union of Concerned Scientists. Environmental impacts of natural gas, https://
www .ucsusa .org /clean - energy /coal - and - other - fossil - fuels /environmental
- impacts - of - natural - gas.
22. Ruben, E., Davidson, J., and Herzog, H., 2015. The cost of CO2 capture and
storage. International Journal of Greenhouse Gas Control. doi:10.1016/j.
ijggc.2015.05.018.
23. American Physical Society, 2011. Direct air capture of CO2 with chemicals.
https:// www .aps .org /policy /reports /assessments/.
24. Stephenson, N. L., et al., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90– 93. doi:10.1038/nature12914.
25. Venton, D., 2016. Can bioenergy with carbon capture and storage make an
impact? Proceedings of the National Academy of Sciences, 47, 13260– 13262.
doi:10.1073/pnas.1617583113.
26. American Society for Microbiology, 2017. Colloquium Report: Microbes and
Climate Change. https:// www .asm .org /ind
ex .php /colloquium -reports /item
/4479 -microbes -and -climate -change.
27. Keleman, P., and Metter, J., 2008. In situ carbonation of peridotite for CO2
storage. Proceedings of the National Academy of Sciences, 105, 17295– 17300.
doi:101073/pnas.0805794105.
notes to chapter 6 201
28. Hamilton, Clive, 2013. Earthmasters: The Dawn of the Age of Climate Engineering.
New Haven, CT: Yale University Press.
29. Smith, C. J., et al., 2017. Impacts of stratospheric sulfate geoengineering on global solar photovoltaic and concentrating solar power resource. Journal of Applied
Meteorology and Climatology, 56, 1484– 1497. doi:10.1175/JAMC- D- 16– 0298.1.
30. Tilmes, S., et al., 2013. The hydrological impact of geoengineering in the Geo-
engineering Model Intercomparison Project (GeoMIP). Journal of Geophysical
Research: Atmospheres, 118, 11036011958. doi:10.1002/jgrd.50868.
31. Keith, D., 2013. A Case for Climate Engineering. Cambridge, MA: MIT Press.
6 . T I M E F U L N E S S , U T O P I A N A N D S C I E N T I F I C
1. For Packer cognoscenti: Desmond Bishop.
2. Wisconsin Department of Natural Resources, Winnebago System Sturgeon Spear-
ing, http:// dnr .wi .gov /topic /fishing /sturgeon /sturgeonlakewinnebago .html.
3. LaTour, B., 1993. We Have Never Been Modern. Cambridge, MA: Harvard Uni-
versity Press, p. 68.
4. Shulman, E., 2014. Rethinking the Buddha: Early Buddhist Philosophy as Medi-
tative Perception, Cambridge: Cambridge University Press, p. 114.
5. A thousand years later, another Scandinavian, the Danish theologian and philos-
opher Søren Kierkegaard (who would certainly have denied any lingering Viking
influences) posited the complementary idea that “the future signifies more than
the present and the past; for the future is in a sense the whole of which the past
is a part.” [Kierkegaard, 1844, The Concept of Dread].
6. Bauschatz, P., 1982. The Well and the Tree. Amherst: University of Massachusetts Press.
7. Bergquist, L., 2016. Brad Schimel opinion narrows DNR powers on high-
capacity wells. Milwaukee Journal Sentinel, 16 May 2016, http:// archive
.jsonline .com /news /statepolitics /brad -schimel -opinion -narrows -dnr -powers
-on -high -capacity -wells -brad -schimel -opinion -narrows -dnr -powe -378900981
.html.
8. Wieseltier, L., 2015. Among the Disrupted, New York Times Book Review, 7 Jan.
2015.
9. The full text of the Great Law can be found at http:// www .indigenouspeople .net
/iroqcon .htm.
10. Scheffler, S., 2016. Death and the Afterlife. Oxford: Oxford University Press, p. 43.
11. Hauser, O., et al., 2014. Cooperating with the future. Nature, 511, 220– 223.
doi:10.1038/nature13530.
12. Hardin, G., 1969. The tragedy of the commons. Science, 162, 1243– 1248.
13. Sussman, R., 2014. The Oldest Living Things in the World. Chicago: University of Chicago Press.
14. Smith, R., 2014. On Kawara, artist who found elegance in every day dies at
81. New York Times, 15 July 2014. https:// www .nytimes .com /2014 /07 /16 /arts
202 Notes to ch a pter 6
/design /on -kawara -conceptual -artist -who -found -elegance -in -every -day -dies
-at -81 .html.
15. John Cage Orgelprojekt Halberstadt. http:// www .aslsp .org /de/.
16. The Long Now Foundation. http:// longnow .org /clock/.
17. Feder, T., 2012. Time for the future. Physics Today, 65(3), 28.
18. Osnos, E., 2017. Survival of the richest. New Yorker, 30 January 2017.
19. Vizenor, G., 2008. Survivance: Narratives of Native Presence. Lincoln: University of Nebraska Press.
20. Loew, P., 2014. Seventh Generation Earth Ethics: Native Voices of Wisconsin. Mad-ison: University of Wisconsin Press.
21. Wolf, E., and Toon, O., 2015. The evolution of habitable climates under the
brightening Sun. Journal of Geophysical Research: Atmospheres, 120, 5775– 5794.
doi:10.1002/2015JD023302.
22. http:// www .scotese .com /future2 .htm. See also Broad, W., 2007, Dance of the continents. New York Times, 9 January 2007. http:// www .nytimes .com /2007 /01
/09 /science /20070109 _PALEO _GRAPHIC .html ?mcubz = 2.
23. Vonnegut was interviewed in 2005 by David Brancaccio on PBS Now. http://
www .pbs .org /now /transcript /transcriptNOW140 _full .html.
24. Tracy, J., Hart, H., and Martens, J., 2011. Death and science: The existential
underpinnings of belief in intelligent design and discomfort with evolution.
PloSONE 6: e17349. doi:10.1371/journal.pone.0017349. http:// www .plosone
.org /article /info %3Adoi %2F10 .1371 %2Fjournal .pone .0017349.
25. Dobzhansky, T., 1973. Nothing in biology makes sense except in the light of
evolution. American Biology Teacher, 35(3), 125– 129. It should be noted that Dobzhansky was a theist and devout member of the Eastern Orthodox Church
who saw no conflict between his work in evolutionary biology and his belief
in God.
26. Smolin L., 2014. Time, laws, and the future of cosmology. Physics Today, 67(3), 38– 43.
27. Freud, S., 1929, translated by James Strachey, 1961. Civilization and Its Discontents. New York: W.W. Norton, p. 15– 19.
28. Durkheim, É., 1912. The Elementary Forms of the Religious Life. Translated by K. Fields, New York: Free Press (1995), p. 228.
I N D E X
Acasta gneiss, 98, 197, 110
basalt, 62–63, 70–73, 99, 103, 121
acid rain, 120–21, 156
Baumol’s “disease, ” 12
Africa, 53, 55, 88
Beagle, Voyage of, 26, 84
Agassiz, Louis, 135
Becquerel, Henri, 33
Agassiz, Glacial Lake, 135
Bengal Fan (Indian Ocean), 77, 89
age of the Earth, 23, 28–30, 40–47
Big Bang theory, 43
albedo effect, 112, 142
biogeochemical cycles, 81–83, 97, 128,
Alley, Richard, 134
148, 187; disruptions of, in mass
Alps, 39, 73, 74, 83, 135, 172
extinctions, 123–5; human perturba-
Aleutian Islands, 72
tions of, 129, 153, 155; in Proterozoic
Alvarez, Luis and Walter, 54–56, 119
time, 105–9. See also carbon cycle.
amphibians, 118, 121
biostratigraphy, 36
Andes, 72, 131
Blackmore, Susan, 175
animals, origin of 115–6
black smokers, 71
Angkor Kingdom, 132
“Boring Billion” (interval in Proterozoic
Anning, Mary, 27
time), 108–11, 128
anoxia, oceanic, 123–4, 129, 153
brachiopods, 114
Antarctica, 2,55, 138, 168
Brahmaputra River, 77, 89
Anthropocene, 91, 128–131, 133, 167,
Brazil, 69
177
bristlecone pine, 167
Apennines, Italian, 55
British Columbia, 87, 153
apocalypticism, 11–12, 119
Buddhism, 162
Appalachian Mountains, 3, 38, 89–90
Bunin, Rabbi Simcha, 177
Archean Eon, 98–103
archeology, 51, 53
14C dating, 50–52, 59
Arctic, 2–5, 81, 93–95, 141–2, 180
Cage, John, 168–9
Argon-argon dating, 54–57
calcite, 82–83, 114, 123, 146, 153–4
Argonne National Laboratory, 45
Caledonides, 3, 10,
73
Arhennius, Svante, 138
California, 154
ash, volcanic, 37–38, 53
California Institute of Technology, 45
Asia, 73, 74, 132, 156
Cambrian explosion, 114–5, 123
asthenosphere, 83
Cambrian Period, 28, 29, 40, 58, 114–5
astrobiology, 14
Cambridge University, 33
Atlantic Ocean, 62, 68, 69, 143, 147
Canadian Shield, 53, 57–58, 98, 110
Atwood, Margaret, 168
Cape Verde Islands, 88
Australia, 58–59, 101–2, 114, 167
carbon capture and storage, 148–153
carbon cycle, on geologic timescales,
Bangladesh, 77
81–83, 106, 141–2; 172; human
baobab trees, 167
perturbations of, 143–54; and mass
Baraboo Hills, Wisconsin, 78
extinctions, 123–4
204 I n dex
carbon dating. See 14C dating
Dangaard-Oeschger cycles, 140
carbon dioxide in atmosphere, 81–83,
Darwin, Charles, 25–56, 28–32, 35, 40,
96, 121–4, 129, 138, 141–55
61, 63, 84, 116–7, 137, 175–6
carbon market or tax, 149, 150
Dawkins, Richard, 175
carbon, stable isotopes of, 100, 139,
day, length of in geologic past, 99
146
dead zones in ocean, 123–4, 129, 153
Carboniferous Period, 40
decay constant, 33–35
Caribbean Sea, 56
Deccan Traps, 121
Carnegie, Andrew, 103
decompression melting, 64
Cascade Range, 72
Descartes, René, 8
Cascadia subduction zone, 87
Devonian Period, 35, 40, 91, 123
catastrophism, 24, 56, 120, 122
diamond, 59
Cenozoic Era, 27, 68, 81, 116, 118
dinosaurs, 54, 57, 68, 81, 119
Central America, 87, 132
Dobzhansky, Theodosius, 175
Chamberlin, T.C., 93, 138, 139, 143
“Doomsday vault, ” 180
Channeled Scablands, 144
Durkheim, Émile, 176
chemical weathering, 81–83, 172
Dylan, Bob, 62, 77, 104
Chicago, University of, 44, 122
Chicxulub crater, 56–57, 61, 120–1
earthquakes, 84–88; human-induced,
Chile, 84
99, 150
China, 88, 90, 132
East African Rift, 53
climate change, anthropogenic, 94–95,
Timefulness Page 24