The Neuroscience of Intelligence

Home > Other > The Neuroscience of Intelligence > Page 33
The Neuroscience of Intelligence Page 33

by Richard J Haier


  Thompson, T. W., Waskom, M. L., Garel, K. L., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., Chang, P., Pollard, K., Lala, N., Alvarez, G. A. & Gabrieli, J. D. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8, e63614.

  Thurstone, L. L. (1938). Primary Mental Abilities, Chicago, IL: University of Chicago Press.

  Thurstone, L. L. & Thurstone, T. (1941). Factorial Studies of Intelligence, Chicago, IL: University of Chicago Press.

  Tidwell, J. W., Dougherty, M. R., Chrabaszcz, J. R., Thomas, R. P. & Mendoza, J. L. (2014). What counts as evidence for working memory training? Problems with correlated gains and dichotomization. Psychonomic Bulletin and Review, 21, 620–628.

  Toga, A. W. & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Review of Neuroscience, 28, 1–23.

  Tommasi, M., Pezzuti, L., Colom, R., Abad, F. J., Saggino, A. & Orsini, A. (2015). Increased educational level is related with higher IQ scores but lower g-variance: evidence from the standardization of the WAIS-R for Italy. Intelligence, 50, 68–74.

  Trahan, L. H., Stuebing, K. K., Fletcher, J. M. & Hiscock, M. (2014). The Flynn effect: a meta-analysis. Psychological Bulletin, 140, 1332–1360.

  Trzaskowski, M., Davis, O. S. P., Defries, J. C., Yang, J., Visscher, P. M. & Plomin, R. (2013a). DNA evidence for strong genome-wide pleiotropy of cognitive and learning abilities. Behavior Genetics, 43, 267–273.

  Trzaskowski, M., Harlaar, N., Arden, R., Krapohl, E., Rimfeld, K., McMillan, A., Dale, P. S. & Plomin, R. (2014). Genetic influence on family socioeconomic status and children’s intelligence. Intelligence, 42, 83–88.

  Trzaskowski, M., Shakeshaft, N. G. & Plomin, R. (2013b). Intelligence indexes generalist genes for cognitive abilities. Intelligence, 41, 560–565.

  Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160–164.

  Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B. & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Sciences, 14, 623–628.

  Ukkola-Vuoti, L., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C., Raijas, P., Karma, K., Lahdesmaki, H. & Jarvela, I. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS ONE, 8, e56356.

  Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J. & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Sciences, 26, 759–774.

  Urban, D. J. & Roth, B. L. (2015). DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annual Review of Pharmacology and Toxicology, 55, 399–417.

  Utz, K. S., Dimova, V., Oppenlander, K. & Kerkhoff, G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications. Neuropsychologia, 48, 2789–2810.

  Vakhtin, A. A., Ryman, S. G., Flores, R. A. & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. Neuroimage, 103, 349–354.

  Van Den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 11372–11377.

  Van Den Heuvel, M. P. & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31, 15775–15786.

  Van Den Heuvel, M. P., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29, 7619–7624.

  Van Der Sluis, S., Willemsen, G., De Geus, E. J. C., Boomsma, D. I. & Posthuma, D. (2008). Gene–environment interaction in adults’ IQ scores: measures of past and present environment. Behavior Genetics, 38, 348–360.

  Van Leeuwen, M., Van Den Berg, S. M. & Boomsma, D. I. (2008). A twin-family study of general IQ. Learning and Individual Differences, 18, 76–88.

  Vardy, E., Robinson, J. E., Li, C., Olsen, R. H., Diberto, J. F., Giguere, P. M., et al. (2015). A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron, 86, 936–946.

  Vendetti, M. S. & Bunge, S. A. (2014). Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron, 84, 906–917.

  Vernon, P. A. (1983). Speed of information processing and general intelligence. Intelligence, 7, 53–70.

  Villarreal, M. F., Cerquetti, D., Caruso, S., Schwarcz Lopez Aranguren, V., Gerschcovich, E. R., Frega, A. L. & Leiguarda, R. C. (2013). Neural correlates of musical creativity: differences between high and low creative subjects. PLoS ONE, 8, e75427.

  Von Bastian, C. C. & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58.

  Von Bastian, C. C. & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research – Psychologische Forschung, 78, 803–820.

  Von Stumm, S. & Deary, I. J. (2013). Intellect and cognitive performance in the Lothian Birth Cohort 1936. Psychology and Aging, 28, 680–684.

  Vuoksimaa, E., Panizzon, M. S., Chen, C. H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., et al. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25, 2127–2137.

  Wagner, T., Robaa, D., Sippl, W. & Jung, M. (2014). Mind the methyl: methyllysine binding proteins in epigenetic regulation. ChemMedChem, 9, 466–483.

  Wai, J., Lubinski, D. & Benbow, C. P. (2005). Creativity and occupational accomplishments among intellectually precocious youths: an age 13 to age 33 longitudinal study. Journal of Educational Psychology, 97, 484–492.

  Walfisch, A., Sermer, C., Cressman, A. & Koren, G. (2013). Breast milk and cognitive development – the role of confounders: a systematic review. BMJ Open, 3, e003259.

  Wang, L., Wee, C. Y., Suk, H. I., Tang, X. & Shen, D. (2015). MRI-based intelligence quotient (IQ) estimation with sparse learning. PLoS ONE, 10, e0117295.

  Waterhouse, L. (2006). Inadequate evidence for multiple intelligences, Mozart effect, and emotional intelligence theories. Educational Psychologist, 41, 247–255.

  Watson, J. B. (1930). Behaviorism, New York, NY: W.W. Norton & Company.

  Weiss, D., Haier, R. & Keating, D. (1974). Personality characteristics of mathematically precocious boys. In J. Stanley & D. Keating (Eds.), Mathematical Talent: Discovery, Description, and Development. Baltimore, MD: The Johns Hopkins University Press.

  Wendelken, C., Ferrer, E., Whitaker, K. J. & Bunge, S. A. (2016). Fronto-parietal network reconfiguration supports the development of reasoning ability. Cerebral Cortex, 26, 2178–2190.

  Whalley, L. J. & Deary, I. J. (2001). Longitudinal cohort study of childhood IQ and survival up to age 76. British Medical Journal, 322, 819.

  Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A. & Honda, M. (2000). Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173–197.

  Wilke, M., Sohn, J. H., Byars, A. W. & Holland, S. K. (2003). Bright spots: correlations of gray matter volume with IQ in a normal pediatric population. Neuroimage, 20, 202–215.

  Willerman, L., Schultz, R., Rutledge, J. N. & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.

  Wilson, E. O. (1975). Sociobiology; The New Synthesis, Cambridge, MA: Belknap Press of Harvard University Press.

  Witelson, S. F., Beresh, H. & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain, 129, 386�
��398.

  Witelson, S. F., Kigar, D. L. & Harvey, T. (1999). Albert Einstein’s brain – Reply. Lancet, 354, 1822.

  Witelson, S. F., Kigar, D. L. & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353, 2149–2153.

  Wolff, S. B., Grundemann, J., Tovote, P., Krabbe, S., Jacobson, G. A., Muller, C., Herry, C., Ehrlich, I., Friedrich, R. W., Letzkus, J. J. & Luthi, A. (2014). Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 509, 453–458.

  Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., Zhang, Q., Zhang, M. & Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.

  Yang, J. J., Yoon, U., Yun, H. J., Im, K., Choi, Y. Y., Lee, K. H., Park, H., Hough, M. G. & Lee, J. M. (2013). Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience, 246, 351–361.

  Yin, L. J., Lou, Y. T., Fan, M. X., Wang, Z. X. & Hu, Y. (2015). Neural evidence for the use of digit-image mnemonic in a superior memorist: an fMRI study. Frontiers in Human Neuroscience, 9, 109.

  Yu, C. C., Furukawa, M., Kobayashi, K., Shikishima, C., Cha, P. C., Sese, J., Sugawara, H., Iwamoto, K., Kato, T., Ando, J. & Toda, T. (2012). Genome-wide DNA methylation and gene expression analyses of monozygotic twins discordant for intelligence levels. Plos One, 7, e47081.

  Zhao, M., Kong, L. & Qu, H. (2014). A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments. Science Reports, 4, 4176.

  Index

  academic achievement influence of intelligence level, 19–21

  achievement tests, 16–17

  active reading for children effect on IQ, 154

  adenine (A), 59

  adoption studies, 41Denmark Adoption Studies of schizophrenia, 46–47

  Sweden Adoption Study, 47

  twin studies of intelligence, 46–50

  aging and IQ score, 30–32

  Alkire, Michael, 183

  alleles of genes, 60

  Alzheimer’s disease, 64, 156

  amino acids, 59

  analogy tests, 16

  animal studies bridging animal and human research at the level of neurons, 175–179

  aptitude tests, 16–17

  Armed Forces Qualification Test (AFQT), 62

  artificial intelligence (AI) based on human intelligence, 179–183

  attention deficit hyperactivity disorder (ADHD), 156

  autism, 2–3

  autism research, 42

  base pairs (nucleotides), 59, 60

  BDNF (brain-derived neurotrophic factor), 62–63, 132

  behavioral genetics, 41–42

  Behaviorist view of human potential, 39

  bell curve distribution of IQ scores, 13–15

  Benbow, Camilla, 30, 77

  bias in intelligence tests, 17–18

  Big Data analysis, 60

  Binet, Alfred, 12–13

  Binet–Simon intelligence test, 12–13

  bioinformatics, 60

  Blank Slate view of human potential, 37, 39, 195

  Bochumer Matrizen-Test (BOMAT), 144, 146–147, 148–149

  boosting IQ, see increasing intelligence

  Bouchard, Thomas, 50

  brain activity evidence for individual differences, 76–79

  multiple areas involved in intelligence, 76–79 See also fMRI; PET

  brain-altering technologies, 158–162

  brain anatomy Einstein’s brain, 79, 95–96 See also Brodmann Areas

  brain efficiency and intelligence brain activity in low-IQ groups, 75–76

  complexity of the concept, 110

  effects of learning, 73–75

  functional neuroimaging studies, 110

  MEG studies, 112–117

  PET studies, 71–76

  brain imaging, see neuroimaging

  BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies), 166, 181

  brain lesion patients evidence for brain networks, 106–107

  brain mapping, 180–181

  brain networks and intelligence, 100–110

  connectivity analysis techniques, 100–110

  default network, 100–101, 103

  evidence from brain lesion patients, 106–107

  homotopic connectivity, 103–104

  rich club networks, 101

  small-world networks, 101

  brain proteins and IQ, 63

  brain resilience after traumatic brain injury, 103

  brain size and intelligence, 63size of brain regions and intelligence, 85

  whole brain size/volume, 84–85

  Brin, Sergey, 28

  Brodmann Areas (BAs), 85–86, 101

  Buchsbaum, Monte, 71

  Burt, Sir Cyril twin studies, 46–50

  Cajal, Santiago Ramon, xi

  candidate gene studies, 58–59

  CAT scan imaging of the brain, 69

  Chabris, Christopher, 58–59, 141–142

  CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), 64

  chemogenetic technique, 178

  CHIC (Childhood Intelligence Consortium), 61, 63

  China commitment to molecular genetic research, 64–65

  chromosomes, 59, 60

  chronometric testing, 168

  classical music claims for increasing intelligence, 139–143

  Clemons, Alonso, 3

  Clinton, Bill, 166

  cognitive-enhancing (CE) drugs ethical issues, 157–158

  cognitive segregation, 22

  compensatory education programs, 42–45

  complex traits three laws of heritability, 53

  computer games claims for increasing intelligence, 150–153

  computers Watson (IBM computer), 4, 11

  consciousness and creativity, 183–192

  Continuity Hypothesis, 53–54

  correlations between mental ability tests, 5–9

  effects of restricted range of scores, 33–34

  creativity and consciousness, 183–192

  Crick, Francis, 183

  CRISPR/Cas9 method of genome editing, 164, 178

  crystallized intelligence, 9–10

  cytosine (C), 59

  Database of Raising Intelligence (NYU) four meta-analyses, 153–155

  de Geus, Eco J.C., 37

  Deary, Ian, 30–32, 37

  deep brain stimulation (DBS), 161–162

  deGrasse Tyson, Neil, 1

  Denmark Adoption Studies, 46–47

  diffusion tensor imaging (DTI), 90

  Discontinuity Hypothesis, 53–54

  DNA analysis techniques, 56, 57–58, 60

  double-helix structure, 59

  sequencing, 60

  technologies and methods, 41

  Doogie strain of mice, 56–57

  Down’s syndrome, 75–76

  DREADD technique, 178

  drugs ethical issues for cognitive enhancement (CE), 157–158

  psycho stimulant drugs, 156

  to boost intelligence, 155–158

  DUF1220 brain protein subtypes and IQ, 63

  Dutch twin study, 51, 52

  early education effect on IQ, 154

  education policy neuro-poverty and the achievement gap, 196–200

  educational achievement influencial factors, 19–21

  Einstein, Albert, 4, 9, 11Einstein’s brain, 95–96

  electroconvulsive therapy (ECT), 159

  emotional intelligence, 21

  ENIGMA group, 134

  environment and intelligence quantitative genetics studies, 50–56

  shared and non-shared environmental factors, 51–53

  three-component model, 51–53

  epigenetics, 38, 39–40, 59

  ethical issues cognitive enhancement, 157–158

  eugenics, 30, 41

 
; everyday life functioning predictive validity of intelligence tests, 22–25

  expertise, 22, 53–54

  Facebook, 28, 180

  factor analysis alternative models of intelligence, 9–10

  concept, 7

  mental ability tests, 5–9

  fairness of intelligence tests, 17–18

  FDG (fluorodeoxyglucose) PET, 70–71

  fluid intelligence, 9–10, 143–150

  fluorescent protein studies, 177

  Flynn Effect, 49

  fractional anisotropy (FA) studies, 128–, 131 See also diffusion tensor imaging

  Frontal Dis-inhibition Model (F-DIM) of creativity, 189–190

  frontotemporal dementia (FTD), 184–185, 189

  functional literacy score and the challenges of daily life, 23–24

  functional MRI (fMRI), 91–92

  future of intelligence research, 166–168bridging animal and human research at the level of neurons, 175–179

  challenges for the future, 200–201

  chemogenetic technique, 178

  chronometric testing, 168

  cognitive neuroscience of memory and super-memory, 171–175

  consciousness and creativity, 183–192

  machine intelligence based on human intelligence, 179–183

  neuro-poverty, 192–200

  neuro-social–economic status, 192–200

  optogenetic techniques, 177–178

  public policy on neuro-poverty, 196–200

  g-factor and savant abilities, 11

  distinction from IQ, 10–11

  heritability, 54–55

  in alternative factor-analysis models, 9–10

  influence on daily life functioning, 22–25

  nature of, 10–11

  reasons for myths about, 33–35

  relationships to specific mental abilities, 5–9

 

‹ Prev