Emily Lakdawalla

Home > Other > Emily Lakdawalla > Page 58
Emily Lakdawalla Page 58

by The Design


  4.5.2.2 Low-gain antenna

  4.5.2.3 UHF antenna

  4.5.3 Orbiter relays

  4.5.4 Issues affecting communications

  4.5.5 Performance on Mars

  4.6 MOBILITY SYSTEM 4.6.1 Rocker-bogie suspension system

  4.6.2 Motors

  4.6.3 Wheels

  4.6.4 Wheel degradation

  4.7 TESTBEDS 4.7.1 The Mars Yard

  4.7.2 The Vehicle System Testbed

  4.7.3 Scarecrow

  4.7.4 The Qualification Model Dirty Testbed

  4.8 REFERENCES

  5: SA/SPaH: Sample Acquisition, Processing, and Handling 5.1 INTRODUCTION

  5.2 ROBOTIC ARM AND TURRET 5.2.1 Arm mounts

  5.2.2 Cabling

  5.2.3 Turret

  5.2.4 Using the arm

  5.3 THE DRILL 5.3.1 Drill bit assembly

  5.3.2 Drilling

  5.3.3 Drill bit assembly replacement

  5.3.4 Drill problems 5.3.4.1 Teflon debris

  5.3.4.2 Battle short and the sol 911 percussion anomaly

  5.3.4.3 Sol 1536 drill feed anomaly

  5.4 CHIMRA: COLLECTION AND HANDLING FOR IN SITU MARTIAN ROCK ANALYSIS 5.4.1 CHIMRA tour

  5.4.2 CHIMRA 150-micrometer sample pathways 5.4.2.1 Drill to CHIMRA reservoir

  5.4.2.2 Scoop to CHIMRA reservoir

  5.4.2.3 150-micrometer sieving

  5.4.2.4 Inspecting sieve efficiency

  5.4.2.5 150-micrometer portioning

  5.4.2.6 Delivering a 150-micrometer portion to SAM or CheMin

  5.4.3 CHIMRA 1-millimeter sample pathways 5.4.3.1 1-millimeter sieving

  5.4.3.2 1-millimeter portioning

  5.4.3.3 Delivering a 1-millimeter sieved aliquot

  5.4.3.4 Medium-grain-size fraction portioning

  5.4.4 Cleaning and thwacking

  5.4.5 Cached sample operations and doggie bagging

  5.4.6 CHIMRA concerns and anomalies 5.4.6.1 150-micrometer sieve edge weld separation

  5.4.6.2 Drill sample cross-contamination

  5.4.6.3 Primary thwack actuator anomaly

  5.5 DRT: DUST REMOVAL TOOL

  5.6 ORGANIC CHECK MATERIAL

  5.7 SAMPLE PLAYGROUND

  5.8 SAM AND CHEMIN INLETS AND WIND GUARDS

  5.9 REFERENCES

  6: The Mast, Engineering Cameras, Navigation, and Hazard Avoidance 6.1 INTRODUCTION

  6.2 REMOTE SENSING MAST

  6.3 ENGINEERING CAMERAS: NAVCAMS AND HAZCAMS

  6.4 USING THE ENGINEERING CAMERAS 6.4.1 Navcam panoramas

  6.4.2 Drive imaging

  6.4.3 Slip checks

  6.4.4 Environmental observations

  6.4.5 Anomalies

  6.5 ROVER DRIVING 6.5.1 Coordinate systems

  6.5.2 Driving modes 6.5.2.1 Blind driving

  6.5.2.2 Visual odometry

  6.5.2.3 Autonomous navigation and guarded motion

  6.5.2.4 Multi-sol driving

  6.6 REFERENCES

  7: Curiosity’s Science Cameras 7.1 INTRODUCTION

  7.2 MASTCAM 7.2.1 How Mastcam works 7.2.1.1 Camera heads

  7.2.1.2 Color imaging

  7.2.1.3 Focus

  7.2.1.4 Electronics

  7.2.1.5 Artifacts and blemishes

  7.2.1.6 Calibration target

  7.2.2 Using Mastcam 7.2.2.1 360° panoramas

  7.2.2.2 Tactical support imaging

  7.2.2.3 Mastcam science imaging

  7.2.3 Anomalies

  7.3 MARDI: MARS DESCENT IMAGER 7.3.1 How MARDI works

  7.3.2 Using MARDI

  7.4 MAHLI: MARS HAND LENS IMAGER 7.4.1 Introduction

  7.4.2 How MAHLI works 7.4.2.1 Camera head and electronics

  7.4.2.2 Focusing MAHLI

  7.4.2.3 Z-stacks

  7.4.2.4 Figuring out MAHLI image scale

  7.4.2.5 Calibration target

  7.4.2.6 Bad pixels and blemishes

  7.4.3 Using MAHLI 7.4.3.1 MAHLI nested target imaging

  7.4.3.2 Mosaics

  7.4.3.3 MAHLI Landscape Imaging

  7.4.3.4 MAHLI engineering support images

  7.4.3.5 MAHLI self-portraits

  7.4.4 Anomalies and precautions

  7.5 REFERENCES

  8: Curiosity’s Environmental Sensing Instruments 8.1 INTRODUCTION

  8.2 RAD: RADIATION ASSESSMENT DETECTOR 8.2.1 Scientific background

  8.2.2 How RAD works

  8.2.3 Using RAD

  8.3 DAN: DYNAMIC ALBEDO OF NEUTRONS 8.3.1 Scientific background

  8.3.2 How DAN works

  8.3.3 Using DAN

  8.3.4 Anomalies

  8.4 REMS: ROVER ENVIRONMENTAL MONITORING STATION 8.4.1 Introduction: Gale weather

  8.4.2 How REMS works 8.4.2.1 REMS booms

  8.4.2.2 REMS Ultraviolet sensor

  8.4.2.3 REMS Pressure sensor

  8.4.3 REMS on Mars

  8.5 REFERENCES

  9: Curiosity’s Chemistry Instruments 9.1 INTRODUCTION

  9.2 CHEMCAM 9.2.1 How ChemCam works 9.2.1.1 The ChemCam Mast Unit

  9.2.1.2 The ChemCam Body Unit

  9.2.1.3 The ChemCam Calibration Target

  9.2.2 Using ChemCam 9.2.2.1 Sun-safety

  9.2.2.2 Types of Observations

  9.2.2.3 Calibration

  9.2.3 Anomalies

  9.3 APXS: ALPHA PARTICLE X-RAY SPECTROMETER 9.3.1 How APXS works

  9.3.2 Using APXS

  9.3.3 APXS rock compositional classes

  9.3.4 Anomalies

  9.4 CHEMIN: CHEMISTRY AND MINERALOGY 9.4.1 Scientific background

  9.4.2 How CheMin works 9.4.2.1 The CheMin Sample Handling System

  9.4.2.2 The CheMin X-Ray Source

  9.4.2.3 The CheMin Detector, X-Ray Diffraction, and X-Ray Fluorescence

  9.4.3 Using CheMin

  9.4.4 Anomalies and issues

  9.5 SAM: SAMPLE ANALYSIS AT MARS 9.5.1 How SAM works 9.5.1.1 Gas Processing System

  9.5.1.2 Quadrupole Mass Spectrometer (QMS)

  9.5.1.3 Tunable Laser Spectrometer

  9.5.1.4 Gas Chromatograph (GC)

  9.5.1.5 Solid Sample Inlet Tubes

  9.5.1.6 Sample Manipulation System (SMS)

  9.5.1.7 Sample cups

  9.5.1.8 SAM oven

  9.5.1.9 Thermal considerations

  9.5.1.10 SAM testbeds

  9.5.1.11 Electronics

  9.5.1.12 Organic Check Material

  9.5.2 Types of SAM experiments 9.5.2.1 Direct atmospheric measurement

  9.5.2.2 Noble gas enrichment

  9.5.2.3 Methane enrichment

  9.5.2.4 Atmospheric enrichment

  9.5.2.5 Solid sample pyrolysis with evolved gas analysis (EGA)

  9.5.2.6 Gas chromatograph mass spectrometry (GCMS)

  9.5.2.7 Tunable laser spectrometry (TLS)

  9.5.2.8 Combustion

  9.5.2.9 Wet chemistry and opportunistic derivatization

  9.5.3 SAM on Mars

  9.6 REFERENCES

  Epilogue: Back on Earth

  Appendix: Curiosity Activity Summary

  About the Author

  Index

 

 

 


‹ Prev