A Beautiful Math

Home > Other > A Beautiful Math > Page 30
A Beautiful Math Page 30

by Tom Siegfried


  T

  Tel-Aviv University, 166

  Tennis, 141–142

  Terrorist networks, 167

  Theory of everything, 7–8, 222

  Theory of Games and Economic Behavior (von Neumann and Morgenstern), 26, 35–36, 51, 52–53, 68, 217

  Theory of heat, 39–43, 136

  Theory of Moral Sentiments (Smith), 22–23, 24, 106–107

  Thermodynamics, laws of, 60, 136, 210.

  See also Theory of heat

  Torguud Mongols, 116

  Townsend, Charles, 15

  Trust, 103–106, 107, 111

  Tucker, Albert W., 55, 61–62, 240

  U

  Ultimatum game, 61, 92, 103–106, 110, 112, 114–117, 243

  Universality doctrine, 120–121

  University College London, 77

  University of Berlin, 29, 30

  University of Budapest, 29

  University of California, Berkeley, 214

  University of California, Los Angeles, 114, 118

  University of California, San Diego, 185–186

  University of Chicago, 11, 52, 78

  University of Cologne, 173

  University of Ghent, 132

  University of Glasgow, 15

  University of Hull, 195

  University of Maryland, 70

  University of Massachusetts, 37

  University of Michigan, 88, 178

  University of Minnesota, 106

  University of Oxford, 15, 75

  University of Vienna, 34, 76

  University of Virginia, 145

  University of Wroclaw, 169

  University of Zurich, 29

  Utilitarianism doctrine, 30–31

  Utility

  brain processes, 99, 100–101, 109

  defined, 22, 23, 27, 30

  dopamine as reward, 97, 101

  in economics, 31, 37–43, 95

  emotions and, 96–97

  evolutionary fitness, 78–79, 83–85, 88, 158, 161

  mathematical quantification, 31–32, 39–43, 211–213, 237, 238

  in neuroeconomics, 99–100

  ranking (valuation), 40–41, 56

  temperature analogy, 39–43

  utilitarianism doctrine, 30–31

  Utility theory, 237

  V

  Violence, spectating and, 81–83

  von Neumann, John, 26, 28–30, 33, 34, 35–40, 42, 43, 47, 48, 49–50, 51, 52–54, 55, 58, 59, 60, 75, 95, 185–186, 217, 221, 237–238, 239, 242

  Voting

  behavior, 167–168, 174, 214

  quantum game theory application, 185, 190, 194–196

  W

  Wald, Abraham, 249

  Waldegrave, James, 32

  Warfare, 83

  Watts, Duncan, 144, 149, 152, 153, 157, 174

  Wealth, 31

  Wealth of Nations (Smith), 9, 12–14, 16, 17–22, 24, 106–107

  Weber, Robert, 59

  Weibull, Jörgen, 111–112

  Wilson, Kenneth, 166

  Winner-takes-all game, 78

  Wolfram, Stephen, 235, 236–237

  Wolpert, David, 4, 6, 7–8, 199–201, 209–214, 215, 249

  World War II, 45–46

  World Wide Web, 7, 147, 149–150, 157, 158–159, 160

  Wu, Zhi-Xi, 246

  Y

  Yale University, 180

  Z

  Zak, Paul, 105–106, 109

  Zermelo, Ernst, 32–33

  Zero-sum games

  equilibrium point, 58, 225–227

  two-person, 33, 43–50, 53, 54, 58, 60, 186

  Zhang, Yi-Cheng, 176

  Zhou, Lan, 192, 193

 

 

 


‹ Prev