The paintings stretched on to cover the entire ceiling of a part of the cave beneath which he had passed many times. Naturally enough, he first looked where he had always found heavy objects before, on the floor of the cave, and he never leaned back to look upward. But Maria, unhampered by any such preconceptions, looked not only at the floor but all around the cave with the naive open-eyed wonder of a child.
He moved closer to touch the warm reddish-brown flank of the nearest bull. Some of its color came away on his fingertip, and it felt greasy. Trembling with excitement, he and Maria looked throughout the cave. Painted animals nearly six feet long appeared almost everywhere on the ceiling and even, in places, on the walls. Don Marcelino must soon have felt an eerie sensation creep into the very marrow of his own bones. Both a hunter and a student of natural history, he knew only too well that animals such as these had not existed in Spain for many millennia. And as the genealogist of his family and of his district, he must quickly have sensed that he was in the presence of artistic masterpieces created by primitive men who could have been his own distant ancestors. Anyone who has found even a fragment of worked flint can imagine the excitement of that day, let alone the mind-stretching thoughts that surged and tumbled as the father and his daughter tried to sleep that night.
Soon thereafter, Professor Vilanova hurried up from Madrid, and the excitement multiplied. Examining some 150 figures, they could finally reconstruct the technique of painting. The reds came from iron oxide and red ocher; the golden-yellow from lighter ocher; the browns from mixtures with charcoal. These pigments, moistened with water and mixed with grease and animal blood, were then ground into the porous rock by marvelously talented finger tips. Lighter color tones of the animal's coat were blended subtly into darker tones with extraordinary skill. Preserved by the grease and the cool darkness of the cave, the colors were fresh and vibrant as though they had only recently been applied.
Reasoning from the age of the implements lying on the surface, the two men dated the paintings to the Magdalenian era of the Old Stone Age. We can now date them back somewhere between 15,000 B.C. and 12,000 B.C.
The spaniel's search,` Don Marcelino's quest for tools of stone, and Maria's open-minded curiosity had culminated in the discovery of what would later be called "the Sistine Chapel of Prehistory," the first known painted cave of Paleolithic Europe. Passionately pursuing his hobby of archaeology, de Sautuola, to his surprise, determined the discovery of man's first paintings. In quest of science, he happened on art.
The discovery at Altamira forms a classical example of scientific exploration in yet another sense. For, like many another scientific discovery down through the ages, Altamira revealed too much too far in advance of its time. Don Marcelino's treatise, published locally in 1880, was scholarly, and understated, and he noted with becoming modesty that his own efforts were intended to prepare the way for more competent observers.
But the keenest minds of the outside scientific world were not prepared to accept his report. In fact, he and Professor Vilanova were widely suspected of having engineered a hoax. Professor Virchow thought the episode was a deliberate fraud, and his judgment was openly concurred in by all prehistorians at the International Archaeological Congress in Lisbon in 1880. The opposition was particularly fierce from Cartailhac, a professor of prehistory at Toulouse University. To this Frenchman, it was preposterous to think that Ice Age man, with primitive methods, could have produced these works of art, comparable in style and execution with those of contemporary French painters. Indeed, so deep was the skepticism of all the scientists of his time that Don Marcelino was refused admission to successive congresses of French prehistorians in Algiers, Berlin, and Paris. De Sautuola died in 1888, his work ignored if not wholly rejected. A year later the name Altamira still connoted a forgery comparable to Dawson's Piltdown man of our own era, and was not even accorded a single mention at the archaeological Congress in Paris.
Like other scientists, archaeologists would never consider something as real evidence, let alone proven, until it was confirmed by another person somewhere else. The tide began to turn only when the Abbe Henri Breuil, a young French priest, could show Professor Cartailhac identical paintings on the walls of a proven prehistoric cave in southern France. To his credit, Cartailhac then published in 1902 his complete conversion under the title, "La Grotte d'Altamira: Mea Culpa d'un Sceptique." He also made a pilgrimage to Altamira to apologize in person to Maria. Twenty-four years after his epoch-making discovery, Don Marcelino was finally vindicated in his grave.
With the discoveries at Altamira, our vision of our ancestors could never again be the same. Creative minds were at work 15,000 years ago! Henceforth, one could go on to wonder: if so much creative ability existed at the dawn of man, how much is present in each of us today, waiting only to be unearthed, cultivated, and channeled!'
18
Altamirage
The dog that trots about finds a bone.
Spanish Gypsy Proverb
Go forth to seek: the quarry never found Is still a fever to the questing hound, The skyline is a promise, not a bound.
John Masefield
No boundary line, the horizon. It never really fences in our adventurous questing selves. For the skyline always holds forth the promise of unusual and interesting things. Take mirages, for example. A mirage is defined in encyclopedias and dictionaries as one of several images formed when light rays are bent by passing through air of unusual density. As a result, distant views may be magnified as if a telescopic lens were in the atmosphere, and real but remote objects, ordinarily beneath the horizon, may become visible as an inverted mirror image. The usual basis for the phenomenon is a strongly heated layer of air, less dense than usual, and lying next to the earth. A mirage is elusive, as anyone knows who has tried to walk toward a flat shimmering pool that looks like water. It ebbs as fast as you approach it, and advances forward as you retreat.
If we look more closely, we find some interesting analogies between Don Marcelino's Spanish odyssey and a mirage. For Altamira resurrected something hidden beneath the earth's surface, and when it did so, it completely reversed our old erroneous views about our ancestors.
A century ago, no one had the remotest idea our cave man ancestors were highly creative artists. Weren't their talents rather minor and limited to crude flint chippings? But the paintings at Altamira, bursting forth like a mirage, quickly magnified this diminutive view, brought up close and into full focus a distant, hidden era of man's prehistory, revealed sentient minds and well-developed aesthetic sensibilities to which men of any age might aspire. And like a shimmering mirage, the events at Altamira took shape when de Sautuola's heated personal quest interacted with the invisible forces of chance we know exist yet cannot touch. Accordingly, one may introduce the term altamirage to identify the quality underlying Chance IV. Let us define it as the facility for encountering unexpected good luck as the result of highly individualized action. Altamirage goes well beyond the boundaries of serendipity in its emphasis on the role of personal action in chance.
What role did de Sautuola himself play in the paintings' discovery? After all, a dog did "find" the cave, and the initial receptivity was his daughter's. Still, the pivotal reason for the cave paintings' discovery hinged on a long sequence of prior events originating in de Sautuola himself. When we dig into the background of this amateur excavator, we find he was an exceptional person. It was he who was sufficiently stimulated by his trip to Paris to start searching thereafter for prehistoric artifacts. Few indeed were the Spaniards out probing into caves 100 years ago. The fact that he-not someone else-decided to dig that day in the cave of Altamira was the culmination of his passionate interest in his hobby. Here was a rare man whose avocation had been to educate himself from scratch, as it were, in the science of archaeology and cave exploration. This was no simple passive recognizer of blind luck when it came his way, but a man whose unique interests served an active creative thrust-someone whose own behavior an
d personality would focus the lens that led circuitously but inexorably to the discovery of man's first paintings.
Then, too, there is a much more subtle matter. How do you give full weight to the personal activities that imbue your child with your own curiosity, inspire her to ask to join you in your own musty hobby, and then agree to her request at the critical moment? For many reasons, at Altamira, more than the special receptivity of Chance III was requiredthis was a different domain, that of the personality and its actions.
Now, this kind of formulation is susceptible more to intuition than to proof, and to some casual onlookers it may take on almost a mystical nebulous quality that invites disbelief. "A Spanish Gypsy's tale," or "an illusion," they might say. Others may agree that, yes, something is definitely there, but it is difficult to get a firm grip on the phenomenon, for it retreats as one pursues it, and advances as one steps back. But you who have observed altamirage firsthand through the heat of a uniquely personal interest know that the phenomenon itself is a real one. And to you, moreover, the metaphoric counterpart for any such novel image is clearly understandable: when you warm up the air, the atmosphere rarifies, new things happen. Light does bend-it doesn't always follow a straight line. Once you experience firsthand the subtle, strange workings of Chance IV, then you join the viewers of the mirage in being simply grateful for any natural phenomena that bring in a larger vision of new worlds beyond the skyline.
To be sure, elements of the other kinds of chance are embedded in the Altamira story. The spaniel's search, the hunter's persistence, the critical meeting between the Don and his friend, whoever he was, who first told him about the cave, the rewarding naivete of Maria as she, alone, looked all around-the intervention by a friend who was a skilled specialist-we have seen examples similar to these once before in earlier chapters. These are the will-o'-the-wisp, but crucial coincidences linked and drawn along by the active personal momentum of altamirage.
19
The Fleming Effect: Examples of Chance
in Biology and Medicine
There are thousands of different molds and there are thousands of different bacteria, and that chance put that mold in the right spot at the right time was like winning the Irish Sweepstakes.
Sir Alexander Fleming
Things do not happen in this world-they are brought about.
Will H. Hays
Science has its taboos. Scientists operate under strictures. It is never entirely in fashion to mention luck in the same breath as science. By convention, the investigator is constrained to put his work in the foreground, himself in the background, avoid the personal pronoun at all costs. Still in the firm grip of the Protestant or other work ethic, he is supposed to make his discoveries for rational reasons by virtue of his own intellectual hard work, and he feels guilty if he does not live up to the code. Like many another conservative neurologist, I value the practice and enjoy the rigor of a rational approach to the neurosciences, while also openly acknowledging some guilty ambivalences.
Perhaps for all these reasons, good examples of Chance I (pure blind luck) do not leap out from the medical literature. In fact, they are very difficult to tease out from formal reports in scientific journals and identify by themselves. However, we can again rely on Fleming, this time for his candid statement about his own "Irish Sweepstakes" luck. To find a statement by Fleming now associated with Chance I should not be too surprising, if we keep in mind that a good example of this form of luck is easily lost sight of among the other varieties of chance, unless the investigator himself points it out.
Many investigators are as energetic as bees, so their fast mental and physical pace stirs up in the pot a certain amount of Chance II for this reason alone. Examples of Chance II are surely all around us, but it is difficult to prove with scientific certainty that they exist, because studies of twins would be required. No researcher seems to have a twin who is indolent, but equal in all other abilities, to serve as a basis for comparison. Perhaps in Paul Ehrlich do we begin to see the impact of a persistent willingness to try something, to keep on going, until the right combination finally occurs. In the beginning of Ehrlich's career he looked for a treatment for bacterial and parasitic diseases. Later, he was diverted from this, his main work, by the prospect of finding a treatment for syphilis. Trying literally hundreds of different compounds, he finally succeeded with salvarsan (arsphenamine) on the 606th try.
Although the number 606 is quantitative and easy to remember, Chance II starts in this case with an earlier number no one ever noticed then and no one now recalls. At some blurred spot in our consciousness, the things we start out seeking fade away; from then on things found are empirical and utterly unpredictable. Therefore, Chance II begins, not in Ehrlich's boyhood, not even when he first started to look for a potential "606" compound, but at the hazy moment later on when his intellect really abandoned all rational hope of ever finding such a suitable compound. We don't know whether he passed this point at compound 106, 306, or 506. But the index of Chance II in his discovery would be how much he was astonished, not how much he was relieved, when 606 turned out to work.
You may rightly observe that because Ehrlich was trying to find a treatment for syphilis, his search was intentional, and therefore compound 606 was arrived at more by design than by accident. But Kettering might reply that after anyone makes 605 negative attempts to find something, the odds are almost nil that he will encounter it on the next try. When that far removed from the beginning of the quest, you're just "going through the motions"; you don't logically expect a solution. At this late date the outcome-always subject to the luck of the drawwould depend on whether or not a chemist happened to synthesize an effective compound that Ehrlich might then happen to try. In any event, in Paul Ehrlich, who always kept on going from his childhood until he stumbled on 606, we at least have a numerical, almost quantitative, expression of a persistent willingness to try until chance turns up a lucky combination.
As one example of Chance III (the prepared mind), we can turn to Conrad Rontgen's discovery of X rays. One day in 1895, ROntgen was experimenting with cathode rays in a darkened room. Some barium platinocyanide happened to be nearby. Suddenly, he noticed that the barium salt seemed to emit its own light-to fluoresce. No ordinary light rays could have been generated by the cathode tube and then been transmitted across the room to light up the barium, because a solid piece of cardboard blocked the path of light between the tube and the barium. Rontgen concluded that he was in the presence of something-that powerful invisible rays generated by the cathode tube had gone through the cardboard.
The discovery of the cause of puerperal sepsis by Ignaz Semmelweiss marks another example of Chance III. One day in 1847, a male laboratory assistant contracted a skin infection from infected pathological material. The infection spread and the man died. Semmelweiss was present when the autopsy was performed on the assistant, and recognized how closely his fatal disease resembled the infection occurring in mothers soon after childbirth ("childbed fever"). He perceived that obstetricians, who in those days used neither gloves nor other sterile techniques, were moving on from the room where one mother lay sick or the autopsy room where one mother had died to the delivery room of another. In so doing, they were spreading the disease to pregnant women undergoing delivery. Semmelweiss was severely attacked for his conclusion, but years later it would be proven that the disease was contagious, as he had predicted, and streptococci would be shown to be the bacterial cause.
On analyzing any given discovery, it may be a thorny matter to draw an arbitrary line between the contributions of Chance I through Chance IV. No need to-it is not an either/or matter. Another part of the problem resides in our lack of biographical or autobiographical information. If we only knew more about the background and life history of various scientists we might then find that their luck originated not in the sagacity of Chance III per se, but that it was in fact provoked by Chance IV, by distinctive personal actions highly specific for each man. Given th
is more personal insight, we might wish to add some further contribution of Chance IV to their discovery.
Take now, for one example of the subtle workings of personality in Chance IV, the background of Alexander Fleming. In his background was a boyhood shaped by the frugal economy of a Scottish hill farm in Ayrshire. Later, we find that much of his decision to train and work at old St. Mary's Hospital in London was not based on the excellence of its scientific facilities. Laboratories there were primitive by today's standards, and mold spores from a colleague's lab on the floor below might easily waft up the stairwell or float in from your open window, drop into your own culture dish, and grow there if the circumstances were propitious.' Instead, Fleming's decision hinged on the fact that he liked to play water polo; St. Mary's had a good swimming pool. Without the hobbyswimming-that drew him to St. Mary's, Fleming would never have gone on to discover the bactericidal action of the penicillin mold! Among the several elements that entered into the penicillin story, this is one crucial personal item we tend to overlook. Still later, when he is fortyseven, let us visit his laboratory at St. Mary's and observe him at his work bench in 1928. He has returned from vacation to find a clutter of old culture dishes in his sink. Yet he is reluctant to discard the growth media inside any dish until he feels certain that everything possible has been learned from it. So he then rechecks one culture dish of staphylococci from among the pile of those experiments that he had seemingly "completed" weeks before. This crucial delay provided optimal growth conditions, helping both the mold spore to generate its penicillin and the staph bacteria to become susceptible to it.'
Chase, Chance, and Creativity Page 11