The zig-zag, to-and-fro narrative lines in this book illustrate research projects that were active, inactive, and reactivated in a laboratory over many years time. Whenever multiple projects are involved in biomedical research, we need to consider the important dimension of time. Why? Because when your progress on any one project slows or stalls, say for a week or a year, or more, you give it a lesser priority of necessity. You redirect finite resources along more promising lines. If you're fortunate, these alternate lines of research just might provide a critical clue. Once recognized, the clue may take you back to resolve that first problem you had been obliged to shelve temporarily.
Semanticists might contend that, at one level, you still remained "in quest" of the first problem; hence, your later accidental discovery (and sagacity) did not conform to the rigidity of Walpole's eighteenth century definition. But words aside, grateful researchers still go on stumbling across fresh clues that might somehow help solve any of their multiple quests-inactive, or ongoing. The foregoing observations suggest that it may prove more fruitful to probe the dynamic operations of the varieties of chance in an actual laboratory (Appendix C) than to become involved in semantic hair-splitting.
In humans, it may be difficult to identify all the many sources of one's creative quests, particularly when they are buried within the very fabric of life itself. For example, without being unduly philosophical, we can readily view the creative urge to "bear fruit" as an extension of the deepest biological urge toward reproduction. As Gutman has put it, "Man creates his outer world not only in his own image but, at the same time, he enlarges this image beyond life size. As an expression of the principal of self-duplication, creative activity is intimately related to growth and reproduction."' It should not surprise us too much to find creation, in the broadest biological sense, residing at the very core of what we call creativity.
29
The Creative Setting
(The creative process) is the emergence in action of a novel relational product, growing out of the uniqueness of the individual on the one hand, and the materials, events, people, or circumstances of his life on the other.
Carl Rogers
Human creativity flourishes in certain settings.' In my own family, originality in music, art, writing, preposterous associations, "punning," and higher forms of humor were encouraged early, both by example and by praise. The conditioning still went on each time I visited my parents in their final decades. In his eighties, my father might be working on a new painting, or on a tape of reminiscences about the late humorist, James Thurber. And my mother would, for the duration of my stay, interrupt her substitute teaching and reduce the many visits to our home by neighbors, teachers, artists, and other high-spirited creative types. Mother remained interested in people of all kinds, both inside and outside her family, until she died at the age of ninety-nine.
In an earlier chapter, I documented some ways in which my father provided a role model. Mothers, too, influence the creative setting. For example, mothers of creative New York State high school students were studied psychologically to determine which of their personality characteristics might have fostered creativity in their sons.' The prototype mother turns out to be an independent, capable woman, perceptive in interpersonal relationships, but not always concerned about the social impression she creates. Although adaptable to change and variety, she still expresses her impulses freely and is restive when confronted by rules and restraints. Confident and versatile, she is not always reliable and may not achieve a commensurate position of high community visibility. Though perceptive and tolerant of others, she also appears indifferent and detached. Biologically female, she scores somewhat lower on psychological tests for feminine interests. In short, she contains (as did my own mother) a dynamic balance of contrasting tensions not unlike those of her son.
The family setting in which scientific creativity develops has also been examined.' The descriptions convey a reasonable picture of the climate in my own family when I was a child. For example, my parents encouraged my independence. They were moderately affectionate, and did not become involved or intrude in negative ways. They did communicate certain expectations, however, and from these expectations, I sensed that I was trusted to make my own rational choices. This trusting attitude set the tone of free inquiry and enhanced my ability to achieve by independence rather than by conformity.
The school must play an important part in reinforcing and expanding what is learned in the home, but it is difficult to tease out this separate contribution. In Eiduson's study of forty Ph.D. research scientists, all were very diverse in their biographical data, and no crucial chemistry set, no single all-important teacher decided their vocation.'
Humor, novelty, freedom, and creative performance have been linked in a speculative way for many years. Some recent research provides factual data suggesting that creativity is enhanced by the release from tension that we experience as an integral part of humor. For example, in one study, the Torrance creativity test was used to assess creativity in 282 tenth grade Israeli students. Just before the test, half of the students listened to a recording of the performance of Israel's most popular comedian. These students showed much higher creativity scores in terms of originality, flexibility, and fluency than did the other half of their classmates who were not so entertained.'
Creative potential can be enhanced if it is considered to be important. As Plato said, "What is honored in a country will be cultivated there." Even programmed instruction can enhance creativity in children, but it must be properly prepared so that it reinforces many different responses. In this regard, I was interested in the results of one controlled study of Berkeley schoolchildren." Some of the fifth and sixth graders were encouraged to use creative approaches to solve detective stories and mysteries; their classmates served as the control group. It turned out that the programmed learners did much better both qualitatively and quantitatively in subsequent tests of their creative and problem-solving abilities. Moreover, their improvement generalized to test materials quite different from the original problems. It was not only a few children who benefited-children at all IQ levels shared in the improvement. When follow-up tests were performed six months later, the trained children still maintained their edge in problem-solving abilities, but they no longer retained their ability to generalize to other tasks. An interesting difference emerged between solving new problems and solving those of a purely logical nature, for when they were subsequently tested for logical problem-solving skills the trained children had not improved over their controls.
Children aren't the only ones who can improve. When adult business school students were trained in creative thinking, the quality and quantity of their ideas also improved.' The older students (age twentythree to fifty-one) gained as much from the course as did younger students (age seventeen to twenty-two). So we see that continuing education does make sense; we should all make a point of providing ourselves with repeated reinforcement of problem-solving abilities on a lifelong basis.
I have noted an interesting "carry-over" phenomenon in this regard. For example, I develop a creative mental "set" if I am working on a watercolor or taking a pottery course. Once in this creative frame of mind, I find that new ideas come to me more freely in my professional work in the laboratory and even along administrative lines.
Certain social environments dispose favorably toward originality. The creative spirit flourishes best in a climate all too rare: one in which ideas are the coin of the realm, and concepts and mechanisms are held all- irnportant. Here are the elements in such an ideal setting: When there is freedom of expression and movement; lack of fear of dissent and contradiction; willingness to break with custom; a spirit of play as well as a dedication to work; and a sense of purpose on a grand scale.'
One can certainly agree with the fact that "the open system is thus the ideal, propitious environment for creativity, and anything in the environment that tends to close the system makes the environment unpropitious
for creativity.""
The message for administrators is clear: first choose the right people and then support them fully, but don't meddle unnecessarily in their research. For in research, if there is anything worse than having too little administrative efficiency, it is having too much.
But creativity doesn't imply joyously happy researchers roaming freely like contented cows in a lush, green, unfenced pasture. There are limits to happiness. As we have seen earlier, complete inner and outer harmony is not an integral part of the creative process. Thus, in children, the greatest creativity occurs in association with an intermediate level of anxiety,'" not among those lowest in anxiety. Similar results have emerged from a study of adult scientists and engineers.'' These researchers were more effective when there was a "creative tension" between sources of stability and disruption, between security and challenge.
Other features of the local setting also enhance scientific creativity. They include: academic freedom; a feeling of security; access to pertinent literature; time; the freedom to contact other investigators; freedom from unnecessary harassment; generous, long-term financial support; good collaborators; and sympathetic administrators."
It took very little time before my scientific colleagues-local, national, and international-became central figures in my intellectual environment. These men and women played a major role in my life, and still do. They provided more than new stimuli and facts; they also shaped illy attitudes. During my formative years they taught me an important distinction. Growing up earlier, when I heard the question. "what's new?," the phrase seemed no more than a banal prelude to casual conversation. But now, when scientific friends ask me this question, I know they mean: "What have you found out recently that's never been known before?"
The implication is clear; this knowledge must be new not only in Portland, or Denver, but anywhere else on the surface of the earth. The basic neuronal mechanisms of creative inspiration remain independent of the value of their product. But creativity in science transcends a purely local interpretation; it operates in the international dimension. The goal is something unique within the entire realm of existing scientific knowledge. Thus, in the arts, I have a casual understanding that I can still enjoy myself at leisure on my home ground, creating music, pottery, and painting for myself or for a small circle of friends. But, beyond home ground, the rigorous demands of the scientific world call for something more. The essence of scientific creativity is a product that is brand new within the ken of the world scientific community.
Laboratories all over the world necessarily compete in the marketplace for this new scientific information. In 1958, Horst Jatzkewitz, while working independently in Germany, also reported an increase of sulfatides in MLD." The discovery in our two laboratories, continents apart, came about through quite different approaches, each a separate expression of creativity. How did it feel to be a co-discoverer rather than a discoverer? Well, I remember feeling let down when I found the sulfatide story was to be shared, and for a while, whenever the question of priority was forced, I feebly rationalized that my manuscript was sent off two weeks before my competitor's. But these petty considerations began to evaporate within weeks, because the value of each discovery was reinforced, not diluted, by the other. Indeed, in science, one soon learns that nothing is considered rigorously proved unless it is confirmed in another laboratory, and preferably by other methods. This is good. In the forward thrust of a new field of science, the real setbacks occur when "fundamental" facts thought to be true, and acted upon as such, later turn out to be false.
The progress of each scientist depends utterly on a firm data base established by the worldwide fellowship of scientists. To illustrate this point, let us now take an abbreviated look at MLD from the international perspective (figure 13). Here, we see that contributions from at least seven different countries converge into our present concept of MLD. And this figure includes only the five major lines of evidence available when the first edition went to press. Since then the data base on MLD and on thousands of other genetically determined diseases has expanded manyfold. Thanks to the dedicated efforts of Victor McKusick, his staff, and colleagues worldwide, the basic information is now updated at intervals and made available online at "OMIM" (Online Mendelian Inheritance in Man).' It is worth emphasizing that parents, patients, biochemists, biochemical pharmacologists, geneticists, technicians, physicians and other workers in the health sciences all contribute to these impressive advances. As Jose Ortega y Gasset proposed, it is the many who lay the groundwork for the few."
In recent decades, the abnormal sulfatase A activity in MLD has been attributed to errors on chromosome 22. Laboratories in many countries have since found that a large number of different mutations can precipitate MLD by acting singly or in combination. On the therapeutic side, hopes were raised by the single-case reports that bone marrow transplantation seems to slow late infantile MLD, and can actually improve many of the central nervous system manifestations of the childhood form.'
This version of the MLD story is fairly typical of many other scientific discoveries. Advances occur not so much in one brief intuitive flight of the imagination as in an incremental ripening that tends to evolve very slowly. While the pace of the discovery process does seem to be quickening, most culminating events tend to occur only when, in the history of ideas, "the time is right." Let us examine the contributions of all those early researchers at the left in figure 13. When we do, it seems certain that their ideas and technology generated a momentum that would have caused someone to unravel the sulfatide-sulfatase-MLD story-even if all the later investigators in the center portion of the diagram had never been born.
Looking back now, in this perspective of time, I see my own work, and that of our team, shrinking in significance. Surely someone else would inevitably have made the same discovery sooner or later. What do you do when you confront this sobering reality? You can rationalize. You say to yourself that in some larger sense, a research discovery resembles a painting or poem. It is not a thing depersonalized. Rather, it is both a statement of self and an expression of the vitality within a society. A society is vitalized to the degree that it first shows its members which social goals are worthwhile and then makes it possible for them to further these goals by solving problems in ways that are personally self-fulfilling. It is in this dual sense that our scientific discoveries become not only an objective fact, an end in themselves, but also become the happy personalized by-product of the Zeitgeist, of the total creative climate within our culture.
As there is a worldwide fellowship of scientists, so too there is a worldwide test for their creative achievement-the Nobel Prize. In a new millennium that now offers more opportunities to travel, to migrate, and to access websites world-wide, there may emerge less of a tendency toward Jewish eminence than had been evident during the previous century. Decades earlier, selection factors, interacting within the setting of the Jewish cultural tradition, combined to place a premium on creative attainment. For example, Arieti conducted an international survey of five ethnic groups of Nobel Prize winners during the seventyyear period up to 1970. A Jew was some twenty-eight times more likely to be a Prize winner than someone else in the total world population at large. The ratio of French winners to winners from the rest of the world was 6.3; of German, 4.4; of Italian, 1.6; and of Argentinian, 1.3. Jews led especially in the fields of medicine and physics, lagging behind only in the Nobel Peace Prize."
Zuckerman published an excellent comprehensive survey of the demographic characteristics of eminent American scientists-both Nobel laureates and members of the National Academy of Sciences. In their geographical origins, most American Nobel laureates came, as did their cohorts, from rural areas, towns, and small cities. Only a third of them came from large cities. (The interesting exception was New York City, where the proportion of laureates was almost twice that expected on the basis of population alone.)"
In their social origins, Nobelists resembled other elite groups in
other spheres of activity (Supreme Court justices, admirals and generals, business leaders, etc.) in that they came largely from middle and upper occupational strata. Eighty-two percent of American laureates had fathers who were professionals, managers, or proprietors. This percentage is about eight times as great as the representation of their cohorts in the same occupational groups in the male labor force in the United States during the same period. However, it was largely the Protestant and Catholic laureates that account for this phenomenon; three-quarters of the Jewish laureates originated from lower reaches of the social stratification system, largely from the ranks of small businessmen and also from clerical and blue-collar families.'"
Zuckerman looked further into the matter of the religious origins of American Nobel laureates (not their own present religious preferences). The proportion of Jewish laureates was nine times the proportion of Jews in the general population. Jews, comprising about 3 percent of the U.S. population, accounted for 27 percent of the Nobelists who were raised in the United States. The proportion of Catholic laureates was but onetwenty-fifth the proportion of Catholics in the population. Catholics, comprising 25 percent of the population, accounted for 1 percent of the laureates. Bearing in mind that Jews account for a relatively high proportion of faculty members in medicine and the biological sciences combined, laureates of Jewish origin were about one and one-half times their expected proportion.'
Chase, Chance, and Creativity Page 19