by Ray Kurzweil
The evolutionary process of technology improves capacities in an exponential fashion. Innovators seek to improve capabilities by multiples. Innovation is multiplicative, not additive. Technology, like any evolutionary process, builds on itself. This aspect will continue to accelerate when the technology itself takes full control of its own progression in Epoch Five.11
We can summarize the principles of the law of accelerating returns as follows:
Evolution applies positive feedback: the more capable methods resulting from one stage of evolutionary progress are used to create the next stage. As described in the previous chapter, each epoch of evolution has progressed more rapidly by building on the products of the previous stage. Evolution works through indirection: evolution created humans, humans created technology, humans are now working with increasingly advanced technology to create new generations of technology. By the time of the Singularity, there won’t be a distinction between humans and technology. This is not because humans will have become what we think of as machines today, but rather machines will have progressed to be like humans and beyond. Technology will be the metaphorical opposable thumb that enables our next step in evolution. Progress (further increases in order) will then be based on thinking processes that occur at the speed of light rather than in very slow electrochemical reactions. Each stage of evolution builds on the fruits of the last stage, so the rate of progress of an evolutionary process increases at least exponentially over time. Over time, the “order” of the information embedded in the evolutionary process (the measure of how well the information fits a purpose, which in evolution is survival) increases.
An evolutionary process is not a closed system; evolution draws upon the chaos in the larger system in which it takes place for its options for diversity. Because evolution also builds on its own increasing order, in an evolutionary process order increases exponentially.
A correlate of the above observation is that the “returns” of an evolutionary process (such as the speed, efficiency, cost-effectiveness, or overall “power” of a process) also increase at least exponentially over time. We see this in Moore’s Law, in which each new generation of computer chip (which now appears approximately every two years) provides twice as many components per unit cost, each of which operates substantially faster (because of the smaller distances required for the electrons to travel within and between them and other factors). As I illustrate below, this exponential growth in the power and price-performance of information-based technologies is not limited to computers but is true for essentially all information technologies and includes human knowledge, measured many different ways. It is also important to note that the term “information technology” is encompassing an increasingly broad class of phenomena and will ultimately include the full range of economic activity and cultural endeavor.
In another positive-feedback loop, the more effective a particular evolutionary process becomes—for example, the higher the capacity and cost-effectiveness that computation attains—the greater the amount of resources that are deployed toward the further progress of that process. This results in a second level of exponential growth; that is, the rate of exponential growth—the exponent—itself grows exponentially. For example, as seen in the figure on p. 67, “Moore’s Law: The Fifth Paradigm,” it took three years to double the price-performance of computation at the beginning of the twentieth century and two years in the middle of the century. It is now doubling about once per year. Not only is each chip doubling in power each year for the same unit cost, but the number of chips being manufactured is also growing exponentially; thus, computer research budgets have grown dramatically over the decades.
Biological evolution is one such evolutionary process. Indeed, it is the quintessential evolutionary process. Because it took place in a completely open system (as opposed to the artificial constraints in an evolutionary algorithm), many levels of the system evolved at the same time. Not only does the information contained in a species’ genes progress toward greater order, but the overall system implementing the evolutionary process itself evolves in this way. For example, the number of chromosomes and the sequence of genes on the chromosomes have also evolved over time. As another example, evolution has developed ways to protect genetic information from excessive defects (although a small amount of mutation is allowed, since this is a beneficial mechanism for ongoing evolutionary improvement). One primary means of achieving this is the repetition of genetic information on paired chromosomes. This guarantees that, even if a gene on one chromosome is damaged, its corresponding gene is likely to be correct and effective. Even the unpaired male Y chromosome has devised means of backing up its information by repeating it on the Y chromosome itself.12 Only about 2 percent of the genome codes for proteins.13 The rest of the genetic information has evolved elaborate means to control when and how the protein-coding genes express themselves (produce proteins) in a process we are only beginning to understand. Thus, the process of evolution, such as the allowed rate of mutation, has itself evolved over time.
Technological evolution is another such evolutionary process. Indeed, the emergence of the first technology-creating species resulted in the new evolutionary process of technology, which makes technological evolution an outgrowth of—and a continuation of—biological evolution. Homo sapiens evolved over the course of a few hundred thousand years, and early stages of humanoid-created technology (such as the wheel, fire, and stone tools) progressed barely faster, requiring tens of thousands of years to evolve and be widely deployed. A half millennium ago, the product of a paradigm shift such as the printing press took about a century to be widely deployed. Today, the products of major paradigm shifts, such as cell phones and the World Wide Web, are widely adopted in only a few years’ time.
A specific paradigm (a method or approach to solving a problem; for example, shrinking transistors on an integrated circuit as a way to make more powerful computers) generates exponential growth until its potential is exhausted. When this happens, a paradigm shift occurs, which enables exponential growth to continue.
The Life Cycle of a Paradigm. Each paradigm develops in three stages:
Slow growth (the early phase of exponential growth)
Rapid growth (the late, explosive phase of exponential growth), as seen in the S-curve figure below
A leveling off as the particular paradigm matures
The progression of these three stages looks like the letter S, stretched to the right. The S-curve illustration shows how an ongoing exponential trend can be composed of a cascade of S-curves. Each successive S-curve is faster (takes less time on the time, or x, axis) and higher (takes up more room on the performance, or y, axis).
S-curves are typical of biological growth: replication of a system of relatively fixed complexity (such as an organism of a particular species), operating in a competitive niche and struggling for finite local resources. This often occurs, for example, when a species happens upon a new hospitable environment. Its numbers will grow exponentially for a while before leveling off. The overall exponential growth of an evolutionary process (whether molecular, biological, cultural, or technological) supersedes the limits to growth seen in any particular paradigm (a specific S-curve) as a result of the increasing power and efficiency developed in each successive paradigm. The exponential growth of an evolutionary process, therefore, spans multiple S-curves. The most important contemporary example of this phenomenon is the five paradigms of computation discussed below. The entire progression of evolution seen in the charts on the acceleration of paradigm shift in the previous chapter represents successive S-curves. Each key event, such as writing or printing, represents a new paradigm and a new S-curve.
The evolutionary theory of punctuated equilibrium (PE) describes evolution as progressing through periods of rapid change followed by periods of relative stasis.14 Indeed, the key events on the epochal-event graphs do correspond to renewed periods of exponential increase in order (and, generally, of complexity), followed
by slower growth as each paradigm approaches its asymptote (limit of capability). So PE does provide a better evolutionary model than a model that predicts only smooth progression through paradigm shifts.
But the key events in punctuated equilibrium, while giving rise to more rapid change, don’t represent instantaneous jumps. For example, the advent of DNA allowed a surge (but not an immediate jump) of evolutionary improvement in organism design and resulting increases in complexity. In recent technological history, the invention of the computer initiated another surge, still ongoing, in the complexity of information that the human-machine civilization is capable of handling. This latter surge will not reach an asymptote until we saturate the matter and energy in our region of the universe with computation, based on physical limits we’ll discuss in the section “. . . on the Intelligent Destiny of the Cosmos” in chapter 6.15
During this third or maturing phase in the life cycle of a paradigm, pressure begins to build for the next paradigm shift. In the case of technology, research dollars are invested to create the next paradigm. We can see this in the extensive research being conducted today toward three-dimensional molecular computing, despite the fact that we still have at least a decade left for the paradigm of shrinking transistors on a flat integrated circuit using photolithography.
Generally, by the time a paradigm approaches its asymptote in price-performance, the next technical paradigm is already working in niche applications. For example, in the 1950s engineers were shrinking vacuum tubes to provide greater price-performance for computers, until the process became no longer feasible. At this point, around 1960, transistors had already achieved a strong niche market in portable radios and were subsequently used to replace vacuum tubes in computers.
The resources underlying the exponential growth of an evolutionary process are relatively unbounded. One such resource is the (ever-growing) order of the evolutionary process itself (since, as I pointed out, the products of an evolutionary process continue to grow in order). Each stage of evolution provides more powerful tools for the next. For example, in biological evolution, the advent of DNA enabled more powerful and faster evolutionary “experiments.” Or to take a more recent example, the advent of computer-assisted design tools allows rapid development of the next generation of computers.
The other required resource for continued exponential growth of order is the “chaos” of the environment in which the evolutionary process takes place and which provides the options for further diversity. The chaos provides the variability to permit an evolutionary process to discover more powerful and efficient solutions. In biological evolution, one source of diversity is the mixing and matching of gene combinations through sexual reproduction. Sexual reproduction itself was an evolutionary innovation that accelerated the entire process of biological adaptation and provided for greater diversity of genetic combinations than nonsexual reproduction. Other sources of diversity are mutations and ever-changing environmental conditions. In technological evolution, human ingenuity combined with variable market conditions keeps the process of innovation going.
Fractal Designs. A key question concerning the information content of biological systems is how it is possible for the genome, which contains comparatively little information, to produce a system such as a human, which is vastly more complex than the genetic information that describes it. One way of understanding this is to view the designs of biology as “probabilistic fractals.” A deterministic fractal is a design in which a single design element (called the “initiator”) is replaced with multiple elements (together called the “generator”). In a second iteration of fractal expansion, each element in the generator itself becomes an initiator and is replaced with the elements of the generator (scaled to the smaller size of the second-generation initiators). This process is repeated many times, with each newly created element of a generator becoming an initiator and being replaced with a new scaled generator. Each new generation of fractal expansion adds apparent complexity but requires no additional design information. A probabilistic fractal adds the element of uncertainty. Whereas a deterministic fractal will look the same every time it is rendered, a probabilistic fractal will look different each time, although with similar characteristics. In a probabilistic fractal, the probability of each generator element being applied is less than 1. In this way, the resulting designs have a more organic appearance. Probabilistic fractals are used in graphics programs to generate realistic-looking images of mountains, clouds, seashores, foliage, and other organic scenes. A key aspect of a probabilistic fractal is that it enables the generation of a great deal of apparent complexity, including extensive varying detail, from a relatively small amount of design information. Biology uses this same principle. Genes supply the design information, but the detail in an organism is vastly greater than the genetic design information.
Some observers misconstrue the amount of detail in biological systems such as the brain by arguing, for example, that the exact configuration of every microstructure (such as each tubule) in each neuron is precisely designed and must be exactly the way it is for the system to function. In order to understand how a biological system such as the brain works, however, we need to understand its design principles, which are far simpler (that is, contain far less information) than the extremely detailed structures that the genetic information generates through these iterative, fractal-like processes. There are only eight hundred million bytes of information in the entire human genome, and only about thirty to one hundred million bytes after data compression is applied. This is about one hundred million times less information than is represented by all of the interneuronal connections and neurotransmitter concentration patterns in a fully formed human brain.
Consider how the principles of the law of accelerating returns apply to the epochs we discussed in the first chapter. The combination of amino acids into proteins and of nucleic acids into strings of RNA established the basic paradigm of biology. Strings of RNA (and later DNA) that self-replicated (Epoch Two) provided a digital method to record the results of evolutionary experiments. Later on, the evolution of a species that combined rational thought (Epoch Three) with an opposable appendage (the thumb) caused a fundamental paradigm shift from biology to technology (Epoch Four). The upcoming primary paradigm shift will be from biological thinking to a hybrid combining biological and nonbiological thinking (Epoch Five), which will include “biologically inspired” processes resulting from the reverse engineering of biological brains.
If we examine the timing of these epochs, we see that they have been part of a continuously accelerating process. The evolution of life-forms required billions of years for its first steps (primitive cells, DNA), and then progress accelerated. During the Cambrian explosion, major paradigm shifts took only tens of millions of years. Later, humanoids developed over a period of millions of years, and Homo sapiens over a period of only hundreds of thousands of years. With the advent of a technology-creating species the exponential pace became too fast for evolution through DNA-guided protein synthesis, and evolution moved on to human-created technology. This does not imply that biological (genetic) evolution is not continuing, just that it is no longer leading the pace in terms of improving order (or of the effectiveness and efficiency of computation).16
Farsighted Evolution. There are many ramifications of the increasing order and complexity that have resulted from biological evolution and its continuation through technology. Consider the boundaries of observation. Early biological life could observe local events several millimeters away, using chemical gradients. When sighted animals evolved, they were able to observe events that were miles away. With the invention of the telescope, humans could see other galaxies millions of light-years away. Conversely, using microscopes, they could also see cellular-size structures. Today humans armed with contemporary technology can see to the edge of the observable universe, a distance of more than thirteen billion light-years, and down to quantum-scale subatomic particles.
Conside
r the duration of observation. Single-cell animals could remember events for seconds, based on chemical reactions. Animals with brains could remember events for days. Primates with culture could pass down information through several generations. Early human civilizations with oral histories were able to preserve stories for hundreds of years. With the advent of written language the permanence extended to thousands of years.
As one of many examples of the acceleration of the technology paradigm-shift rate, it took about a half century for the late-nineteenth-century invention of the telephone to reach significant levels of usage (see the figure below).17
In comparison, the late-twentieth-century adoption of the cell phone took only a decade.18
Overall we see a smooth acceleration in the adoption rates of communication technologies over the past century.19
As discussed in the previous chapter, the overall rate of adopting new paradigms, which parallels the rate of technological progress, is currently doubling every decade. That is, the time to adopt new paradigms is going down by half each decade. At this rate, technological progress in the twenty-first century will be equivalent (in the linear view) to two hundred centuries of progress (at the rate of progress in 2000).20, 21
The S-Curve of a Technology as Expressed in Its Life Cycle