Incompleteness

Home > Other > Incompleteness > Page 25
Incompleteness Page 25

by Rebecca Goldstein

reputation of, 13–14, 19–20, 35, 38, 221n

  as scientific realist, 41–43, 45, 254–56

  as U.S. citizen, 233

  Eisenhower, Dwight D., 30

  “either-or” propositions, 202–5

  Elements (Euclid), 130n

  Emperor’s New Mind, The (Penrose), 25, 201

  empiricism, 32, 74–80, 84–90, 107, 111, 137, 215, 258–59, 267n

  Encyclopedia of Philosophy, 23–24, 26

  Epimenides, 166

  epistemology, 17n, 24–25, 27, 29, 121–22, 137, 154n

  Equivalents of the Axiom of Choice (Rubin and Rubin), 224n

  Euclid, 128–29, 137, 185–86, 225n

  evolution, 31–32, 199

  excluded middle, law of the, 143n

  existentialism, 135–36, 189

  Fackel, Die, 71

  Feferman, Solomon, 265n

  Feigl, Herbert, 84–86, 105–6, 109, 110, 136–37, 160, 213–14, 228

  Fermat, Pierre de, 155

  Fermat’s last theorem, 155n

  Fields Medal, 47n

  finitary proofs, 118, 144, 148, 154n, 163, 184n, 185–88, 212

  Flexner, Abraham, 14–20, 33, 219, 229, 237, 245

  formalism, 26, 46n, 86–88, 98–102, 128–29, 132, 134–45, 148, 149, 161

  Forman, Philip, 233–34

  Franz Joseph, Emperor of Austria, 69

  Frayn, Michael, 37–38

  Frege, Gottlob, 56n, 81, 83, 91–92, 96n, 111, 119, 128–29, 144, 218

  Freud, Sigmund, 70, 71

  From A Logical Point of View (Quine), 214

  From Mathematics to Philosophy (Wang), 111

  Fuld, Mrs. Felix, 14–15, 16, 237

  Furtwängler, Phillip, 58, 61, 115n, 204n, 222n

  galaxies, rotation of, 258–59

  games, 122, 134, 136, 141

  game theory, 33n, 40, 100–101

  Gauss, Carl Friedrich, 130n

  Gedanken-experiments (thought-experiments), 65, 66

  Geertz, Clifford, 242–43

  Gentzen, Gerhard, 184n

  geometry, 62, 85, 123–29, 130n, 131, 137–38, 141–42, 225n

  God, existence of, 77–79, 209–10

  Gödel, Adele Nimbursky (Porkert), 33, 208, 209, 223–26, 228–29, 230, 248, 249, 250

  Gödel, Escher, Bach: An Eternal Golden Braid (Hofstadter), 26

  Gödel, Kurt:

  ambition of, 29, 47, 51, 60, 64, 118–19, 187n, 194, 222, 259–61

  authority respected by, 236–40, 244–45

  author’s encounter with, 211–12, 241

  birth of, 53

  childhood of, 53–58, 260–61

  correspondence of, 33, 60, 61, 111–12, 116–17, 192, 227, 234, 235–36, 252n, 266n

  death of, 250–52, 260–61

  Dozent and Privatdozent appointments of, 156, 220–22, 226–28, 251n

  education of, 29, 33, 35, 51, 53, 57–59

  German background of, 53–54, 57–58, 124–26

  Gibbs lecture of (1951), 202–3

  Harvard lectures prepared by, 215

  heart ailment of, 56, 229, 260

  honorary degrees of, 222–23, 231–32

  ill health of, 56, 220, 229, 248–50, 260

  influences on, 58–59, 111–12, 115–16, 193

  at Institute for Advanced Study, 13–14, 20–23, 30–34, 48, 207, 211–12, 215, 219, 222–25, 229–31, 234–50

  intellectual isolation of, 30–32, 35–38, 44–48, 60–61, 213–19, 236–50, 259–60

  “interesting axiom” of, 20–21, 30–31, 48, 55, 236

  Jewish identity misattributed to, 116, 219–20, 226–30

  at Königsberg conference (1930), 65–67, 147–49, 150, 155–62, 195n, 201, 219

  language as viewed by, 110, 158, 261

  legalistic tendencies of, 232–34, 250–51, 252

  legends about, 30–32, 208–13, 232–33, 258–59

  literary remains (Nachlass) of, 59–62, 89, 115–17, 213, 232n

  logical positivism opposed by, 87–88, 109, 213–19, 236, 266n

  as logician, 20–21, 24, 29–30, 31, 48–51, 55, 57, 58–59, 64–65, 74, 76n, 83, 116, 138, 205, 210, 219, 232–34, 236, 239–40, 251–52, 259

  marriage of, 33, 208, 209, 223–26, 228–29, 230, 248, 249, 250

  mathematics revolutionized by, 21–23, 38–40, 59, 64, 161, 207, 218–23, 229–32

  memorial service for, 240, 251–52

  paranoia of, 30, 48–49, 56–57, 204–5, 211, 224, 229, 240–41, 246–50

  personality of, 30–32, 48–49, 56–57, 59, 61, 75–76, 114–15, 223–31, 265n

  Ph.D. dissertations of, 147, 150, 153–54, 156, 159, 186, 221–22

  photographs of, 22, 55, 253

  physical appearance of, 14, 211, 228–29

  physics as interest of, 34, 35, 58, 213n, 253–61

  as Platonist, 44–48, 59, 61–64, 73, 75, 87–88, 104n, 110–13, 116–17, 154, 185, 192, 194, 213–19, 244, 256, 260

  as political exile, 13–14, 34–35, 53, 58, 124–26, 219–22, 225–34

  proof of, see incompleteness theorems

  publications of, 34n, 60, 111–12, 212–13, 216–18, 246, 257, 265n

  questionnaire answered by, 60–61, 115–16, 193

  reputation of, 22–23, 35, 67–68, 147, 207–15, 220–23, 229–31, 248, 251–52, 259, 272n

  reticence of, 57–58, 59, 61, 75–76, 109, 110, 114–15, 116, 135–36, 149, 156–58, 194–95, 207–15

  rheumatic fever, 56, 229

  self-starvation of, 211, 248–50

  at University of Vienna, 29, 33, 35, 51, 53, 58–59, 67–102, 115n, 147, 150, 153–54, 156, 219–22, 225–30, 251n, 255, 260

  as U.S. citizen, 54, 232–34

  in Vienna Circle, 108–13, 115, 116, 117, 135–36, 160–61, 193, 213–14, 216, 228, 236, 266n

  Yale lectures of (1941), 212

  Gödel, Marianne, 33, 53, 54, 55, 192, 223–24, 230, 234, 235–36, 252n

  Gödel, Rudolf (brother), 54, 55, 56

  Gödel, Rudolf (father), 53–54, 55, 223

  Gödel numbering, 67, 156, 162, 165n, 167, 169–77, 179

  Gödel’s Proof (Nagel and Newman), 156

  “Gödel’s Theorem” (Encyclopedia of Philosophy), 23–24

  Goethe, Johann Wolfgang von, 58

  Goldbach, Christian, 87n, 155n, 217

  Goldbach’s conjecture, 155n

  Gomperz, Heinrich, 59, 61, 73, 115n

  Gomperz, Theodore, 59

  Grandjean, Burke D., 60–61, 111–12, 115–16, 193

  Grundgesetze der Arithmetic (Frege), 91–92

  Grundlagen der Geometrie (Hilbert), 137–38

  Hahn, Hans, 82–84, 97, 116, 157, 159, 221, 228

  Hahn-Banach extension theorem, 82

  Hapsburg Empire, 53–54, 68, 69–70, 71

  Hardy, G. H., 46–47

  Heidegger, Martin, 39

  Heisenberg, Werner, 21–22, 36–38, 39, 41–42, 43, 51, 214

  Hempel, Carl, 88–89, 214

  Herzl, Theodore, 70

  Heyting, Arend, 148

  Hilbert, David, 46n, 49, 119–20, 123–24, 136–45, 148, 153, 161, 162–63, 164, 184n, 185, 187, 188, 197n, 198, 212, 218

  Hintikka, Jaakko, 65–66, 99, 147, 267n

  Hirshfeld, Leon, 226–27

  “History of the Gödel Family” (R. Gödel), 54

  History of Western Philosophy (Russell), 102n

  Hitler, Adolf, 13, 225, 227

  Hofstadter, Douglas, 26

  Hörmann, Theodor, 70n

  Hume, David, 77, 267n

  incompleteness theorems, 155–88

  author’s explication of, 164–88

  completeness vs. consistency in, 23–24, 66–67, 140–44, 153–56, 158, 160, 162, 167–68, 169, 175–76, 181–88, 192, 196n–97n, 198, 221

  as conceptual models, 25–26

  development of, 23, 35, 47, 59, 64–67, 74, 155–61, 260–61

  diagonal lemma in, 179–82

  digit juxtaposition in, 172–7
4

  first theorem of, 23, 24, 35, 39, 50, 65, 74–75, 134–35, 158, 162, 164–83, 197n, 202, 211, 241, 270n

  formalism and, 134–35, 145, 149, 161–64, 167, 168–69, 175–77, 178, 182–88, 198, 201–2, 204, 218

  Gödel numbering in, 67, 156, 162, 165n, 167, 169–77, 179

  logical positivism contradicted by, 74–75, 99, 104n, 112–13, 160, 161, 188–89, 191, 266n

  as “logische Kunststücke,” 117, 118–19, 189, 268n–69n

  mathematical implications of, 24–25, 28, 51, 74–75, 158–64, 187–88, 190, 221–23, 231–32, 251–52, 260–61

  mechanical procedures in, 169–77, 183

  metamathematical implications of, 24–29, 35–39, 50–51, 99, 104n, 118–20, 163, 169–77, 187–94, 198–205, 222

  musical analogy for, 156, 165, 176–77

  number properties in, 172–74, 178–83, 184, 187

  objectivity and, 38–40, 50–51

  paradoxes and, 49–51, 65, 66–67, 99, 164, 165n–66n, 179n, 184–85

  philosophical implications of, 27–29, 67, 191–92, 198–205, 211

  popular misinterpretation of, 23, 24–26, 37–40, 61, 74–76, 158, 218, 266n

  preliminary definitions for, 164–65

  proof of, 66–67, 74–75, 115, 117–18, 153–54, 158, 162–64, 167–68, 170–71, 175–83, 184, 187–88, 191, 196n–97n

  publication of (1931), 24, 165n, 195n, 197n

  public disclosure of, 66, 74–75, 110, 147–49, 150, 155–62, 195n, 201, 219

  relativity theory compared with, 36–40

  scientific impact of, 21–23, 161–62, 187–88, 194–205, 231–32

  second theorem of, 23–24, 35n, 74–75, 158, 162–63, 183–88, 212

  statement of, 23–24, 26, 74–75, 155–56

  syntactic relationships in, 171–72, 175–77, 181–83, 188

  Turing’s interpretation of, 190, 195–97

  Viennese cultural context of, 67–102

  von Neumann’s reaction to, 161–63, 187

  well-formed formulas in (wffs), 168–75, 178, 181

  Wittgenstein’s reaction to, 89–90, 99, 100, 102, 111–20, 158, 188–95, 218, 268n–69n

  infinity, 143, 144, 148, 154n, 185–86, 198, 224n–25n

  Institute for Advanced Study:

  appointments to, 229n, 236–45

  directors of, 14–20, 33, 211, 219, 229, 237–39, 241–45

  Einstein as member of, 13–14, 19–20, 48, 234–36, 237

  founding of, 14–16

  Gödel as member of, 13–14, 20–23, 30–34, 48, 207, 211–12, 215, 219, 222–25, 229–31, 234–50

  mathematics faculty of, 16–20, 31, 161–62, 195, 229n, 236–45

  political exiles at, 13–14, 34–35

  Introduction to Mathematical Philosophy (Russell), 117

  intuition, 17n, 40, 67, 100, 121–34, 143–44, 148, 188, 198, 202, 203–4, 216–17, 252, 254n

  intuitionism, 143–44, 148, 252

  “Intuitionist Foundations of Mathematics, The” (Heyting), 148

  Irrational Man: A Study in Existentialist Philosophy (Barrett), 38–39

  “Is Mathematics Syntax of Language?” (Gödel), 265n

  isosceles triangles, 124

  Jews, 19, 70, 79n–80n, 97, 116, 126, 219–20, 226–30

  Kafka, Franz, 170, 252

  Kant, Immanuel, 73, 185, 213n, 267n

  Kaysen, Karl, 211, 242–45

  Kesten, Herman, 68

  Khowâsizm, Abu Ja’far Mohammad ibn Mûsâ al-, 132n

  K.-K. Staatsrealgymnasium mit deutscher Unterrichtssprache, 57–58

  Kleene, Stephen, 251

  Klepetař, Harry, 58

  Kline, Stephen, 195n

  knotted curves, 238–39

  Kochen, Simon, 24n, 170, 187n, 231, 240, 241, 251–52

  Kraus, Karl, 68, 71–72

  Kreisel, Georg, 119

  Kuhn, Thomas, 161, 194

  language:

  abstraction and, 71–72, 78–79, 158

  “games” of, 40, 100–101

  meaning and, 78–80, 86–87, 110, 150–54, 158, 261

  paradoxes in, 50–51, 102–3, 189

  syntax of, 86, 87, 100, 103, 107–8, 112, 189–90

  truth and, 98–99, 104, 189–90

  Language, Truth, and Logic (Ayer), 89, 214

  Leibniz, Gottfried Wilhelm, 27n, 32, 48, 61, 137, 209, 236, 247

  Leoncavallo, Ruggero, 176–77

  Lewis, Clarence I., 82

  “liar’s paradox,” 49–50, 165n, 166, 179n, 196n

  light, properties of, 35, 45, 85

  Lobachevsky, Nicolai Ivanovich, 130n

  logic:

  abstract nature of, 38, 71–72, 78–79, 117, 154n, 158, 192, 198–205, 260–61

  contradiction in, 92, 93n, 101–2, 118, 133–34, 135, 140–42, 192, 196n

  deduction in, 40, 55n–56n, 86, 136, 142, 168–69

  formal, 24, 90–93, 112–13, 114, 189–90, 195–96, 241, 267n–68n

  “limpid,” 150–54, 158, 221, 222

  paradoxes in, 49–51, 65, 66–67, 90–93, 99, 100, 102–3, 117–18, 142–43, 145, 164, 165n–66n, 179n, 184–85, 189, 192, 196n, 198

  predicates in, 150–54, 158

  proofs in, 144n, 196n

  propositions in, 44, 78–79, 85–86, 90–93, 97–103, 150–54, 268n–69n

  rules of, 100–102, 153–54

  syllogistic, 56n

  symbolic, 82, 172–74, 267n–69n

  syntactic nature of, 86, 87, 100–101, 103, 107–8, 112, 150–54, 160, 161, 163, 171–72, 175–77, 181–83, 188, 189–90

  tautologies in, 86, 98–99, 106, 123, 148, 150, 151

  truth in, 44–45, 49–51, 98–102, 116–17, 152–54, 196n, 268n–69n

  variables in, 151–52, 173

  logical positivism, 43–44, 74–80, 84–90, 97–109, 112–13, 119, 160, 161, 188–89, 191, 213–19, 236, 266n

  “Logical Positivism: A New Movement in European Philosophy” (Blumberg and Feigl), 84–85

  Loos, Adolph, 70, 72

  Lucas, John, 200–201, 211

  Mach, Ernst, 80, 85, 112

  “Main Ideas of Logicism, The” (Carnap), 148

  Man Without Qualities, The, (Musil), 57n

  Marchet, A., 228

  Marx, Groucho, 27

  “Mathematical Problems” (Hilbert), 138–39

  Mathematician’s Apology, A (Hardy), 46–47

  mathematics:

  a priori nature of, 17–18, 27, 28, 48, 50n, 76, 85–86, 108, 121–22, 133, 134, 136, 260

  axioms of, 75, 112n, 122–34, 140–41, 144, 163, 185, 186–88, 200, 216–17, 224, 231

  descriptive content in, 86, 87–88, 111, 136, 140–41, 187–88

  diagrams and sketches for, 122–24, 125

  formalism in, 26, 46n, 86–88, 98–102, 128–29, 132, 134–45, 148, 149, 161

  Gödel’s influence on, 21–23, 38–40, 59, 64, 161, 207, 218–23, 229–32

  meta-, 24–29, 33, 35–40, 44–48, 50–51, 62, 64–65, 67, 99, 104n, 118–20, 134, 154n, 156, 163, 169–77, 187–94, 198–205, 222

  objective reality in, 27–28, 35–48, 111–12

  philosophy and, 27–28, 59, 61–64, 100–102, 194

  physics compared with, 29–30, 35, 36–37

  proof in, 86–88, 121–22, 136–37, 138, 140–42, 143n, 144–45, 148–49, 155–59, 243n, 251, 260

  as pure science, 16–17, 26–27, 85–86, 99–100

  reality of, 44–48, 64, 121–22, 134–35, 140–41

  rules of, 101–2, 121–23, 126–33, 136, 137, 154n, 170, 198, 200, 203

  symbols of, 86–87, 99–100, 123–24, 131–32, 133, 136–37, 154n, 167, 198, 267n

  syntactic nature of, 100–101, 112, 131–32, 188, 198–99, 267n–68n

  theorems in, 118, 126, 127–28, 131, 134, 135, 140–41, 200

  truth of, 86–87, 98–102, 107–11, 137–38, 140–41, 148–49, 158–59, 188, 202–5

  see also arithmetic; geometry; logic

&nb
sp; Mauthner, Fritz, 103

  Mendel, Gregor, 53n

  Menger, Karl, 84, 110, 117–18, 149, 158, 220, 225–26, 227, 228, 245–46, 247, 250–51, 266n

  metaphysics, 76, 85, 104n, 110–11, 112, 216

  Milnor, John, 238–39

  mind, see cognition

  Misner, Charles, 258

  model theory, 187n, 194, 251–52

  modus ponens, 92n

  molecular theory, 80n–81n

  Monk, Ray, 149

  Montgomery, Deane, 238, 239–40

  Moore, G. E., 97, 267n

  Morgenstern, Oskar, 32–33, 48, 211, 224, 230, 232–34, 246, 247–51

  Morrell, Ottoline, 94, 113

  Musil, Robert, 57n

  mutation, genetic, 32n

  mysticism, 83–84, 104n, 106, 107, 191–92

  Nagel, Ernest, 156

  Nagel, Thomas, 31–32

  Natkin, Marcel, 109

  “Nature of Mathematics, The: Wittgenstein’s Standpoint” (Waismann), 148–49

  Nazism, 13, 19, 70, 79, 124–26, 212, 225–30, 251n

  Nelböck, Johann (Hans), 79n

  Neurath, Olga, 82

  Neurath, Otto, 81–84, 110

  Newman, James R., 156

  Newton, Isaac, 58, 254n

  New York Times, 241, 243, 254n

  “Nicolas Bourbaki,” 243n

  Nietzsche, Friedrich, 39

  non-Euclidean geometry, 129, 130n, 225n

  non-finitary proofs, 154n, 212

  nonstandard analysis, 241

  numbers:

  even, 155n, 165n

  natural, 45, 112n, 127, 139, 163, 165n–66n, 172–74, 178–83, 187

  prime, 46–47, 87, 155n, 172, 176, 217

  properties of, 172–74, 178–83, 184, 187

  real, 112n, 139

  sets of, 62, 83, 90–93, 112n, 129–30, 131, 135, 139, 142, 144–45, 212, 216–17, 224–25, 252

  theory of, 23, 58–59, 61, 64, 83, 85–86, 90–93, 118, 131, 135, 155n

  “On computable numbers, with an application to the Entscheidungsproblem” (Turing), 197n

  ontology, 76, 209–10

  Oppenheimer, J. Robert, 237–39, 242, 245

  Organon (Aristotle), 55n–56n

  Ovid, 209

  Pagliacci, I (Leoncavallo), 176–77

  parallels postulate, 129n–30n, 136, 185–86, 225n

  Pascal, Fania, 114

  Peano, Giuseppe, 96, 127, 128

  Peebles, Jim, 258–59

  Penrose, Roger, 25, 201–2

  philosophy, 27–29, 34, 59, 61–64, 67, 100–102, 103, 191–92, 194, 198–205, 211

  Philosophy of Mathematics (Benacerraf and Putnam, eds.), 111–12, 216–18

  physics, 28–30, 33, 34, 35–48, 51, 58, 65, 213n, 253–61, see also relativity theory

  Pinker, Steven, 32n

  Planck, Max, 80

  Plato, 39, 44, 61–64, 113, 121, 137, 199, 255, 260

 

‹ Prev