The Secret Life of the Mind

Home > Other > The Secret Life of the Mind > Page 3
The Secret Life of the Mind Page 3

by Mariano Sigman


  The language instinct

  In addition to being connected for concept formation, a newborn’s brain is also predisposed for language. That may sound odd. Is it predisposed for French, Japanese or Russian? Actually, the brain is predisposed for all languages because they all have–in the vast realm of sounds–many things in common. This was the linguist Noam Chomsky’s revolutionary idea.

  All languages have similar structural properties. They are organized in an auditory hierarchy of phonemes that are grouped into words, which in turn are linked to form sentences. And these sentences are organized syntactically, with a property of recursion that gives the language its wide versatility and effectiveness. On this empirical premise, Chomsky proposed that language acquisition in infancy is limited and guided by the constitutional organization of the human brain. This is another argument against the notion of the tabula rasa: the brain has a very precise architecture that, among other things, makes it ideal for language. Chomsky’s argument has another advantage, since it explains why children can learn language so easily despite its being filled with very sophisticated and almost always implicit grammatical rules.

  This idea has now been validated by many demonstrations. One of the most intriguing was presented by Jacques Mehler, who had French babies younger than five days old listen to a succession of various phrases spoken by different people, both male and female. The only thing common to all the phrases was that they were in Dutch. Every once in a while the phrases abruptly changed to Japanese. He was trying to see if that change would surprise a baby, which would show that babies are able to codify and recognize a language.

  In this case, the way to measure their surprise wasn’t the persistence of their gaze but the intensity with which they sucked on their dummies. Mehler found that when the language changed, the babies sucked harder–like Maggie Simpson–indicating that they perceived that something relevant or different was occurring. The key is that this did not happen when he repeated the same experiment with the sound of all the phrases reversed, like a record played backwards. That means that the babies didn’t have the ability to recognize categories from just any sort of sound but rather they were specifically tuned to process languages.

  We usually think that innate is the opposite of learned. Another way of looking at it is thinking of the innate as actually something learned in the slow cooker of human evolutionary history. Following this line of reasoning, since the human brain is already predisposed for language at birth, we should expect to find precursors of language in our evolutionary cousins.

  This is precisely what Mehler’s group proved by showing that monkeys also have auditory sensibilities attuned to language. Just like babies, tamarin monkeys reacted with the same surprise every time the language they were hearing in the experiment changed. As with babies, this was specific to language, and did not happen when phrases were played backwards.

  This was a spectacular revelation, not to mention a gift for the media… ‘Monkeys Speak Japanese’ is a prime example of how to destroy an important scientific finding with a lousy headline. What this experiment proves is that languages are built upon a sensitivity of the primate brain to certain combinations of sounds This in turn may explain in part why most of us learn to understand spoken language so easily at a very young age.

  Mother tongue

  Our brains are prepared and predisposed for language from the day we are born. But this predisposition does not seem to materialize without social experience, without using it with other people. This conclusion comes from studies of feral children who grow up without any human contact. One of the most emblematic is Kaspar Hauser, magnificently portrayed in the eponymous film directed by Werner Herzog. Kaspar Hauser’s story of confinement for the duration of his childhood* shows that it is very difficult to acquire language when it has not been practised early in life. The ability to speak a language, to a large extent, is learned in a community. If a child grows up in complete isolation from others, his or her ability to learn a language is largely impaired. Herzog’s film is, in many ways, a portrait of that tragedy.

  The brain’s predisposition for a universal language becomes finetuned by contact with others, acquiring new knowledge (grammatical rules, words, phonemes) or unlearning differences that are irrelevant to one’s mother tongue.

  The specialization of language happens first with phonemes. For example, in Spanish there are five vowel sounds, while in French, depending on the dialect, there are up to seventeen (including four nasal vowel sounds). Non-French speakers often do not perceive the difference between some of these vowel sounds. For instance, native Spanish speakers typically do not distinguish the difference between the sounds of the French words cou (pronounced [ku]) and cul (pronounced [ky]) which may lead to some anatomical misunderstanding since cou means neck and cul means bum. Vowels that they perceive as [u] in both cases sound completely different for a French speaker, as much so as an ‘e’ and an ‘a’ for Spanish speakers. But the most interesting part is that all the children of the world, French or not, can recognize those differences during the first few months of life. At that point in our development we are able to detect differences that as adults would be impossible for us.

  In effect, a baby has a universal brain that is able to distinguish phonological contrasts in every language. Over time, each brain develops its own phonological categories and barriers that depend on the specific use of its language. In order to understand that an ‘a’ pronounced by different people, in varying contexts, at different distances, with head colds and without, corresponds to the same ‘a’, one has to establish a category of sounds. Doing this means, unfailingly, losing resolution. Those borders for identifying phonemes in the space of sounds are established between six and nine months of life. And they depend, of course, on the language we hear during development. That is the age when our brain stops being universal.

  After the early stage in which phonemes are established, it is time for words. Here there is a paradox that, on the face of it, seems hard to resolve. How can babies know which are the words in a language? The problem is not only how to learn the meaning of the thousands of words that make it up. When someone hears a phrase in German for the first time, not only do they not know what each word means but they can’t even distinguish them in the sound continuum of the phrase. That is due to the fact that in spoken language there are no pauses that are equal to the space between written words. Thatmeansthatlisteningtosomeonespeakisliketryingtoreadthis.* And if babies don’t know which are the words of a language, how can they recognize them in that big tangle?

  One solution is talking to babies–as we do when speaking Motherese–slowly and with exaggerated enunciation. In Motherese there are pauses between words, which facilitates the baby’s heroic task of dividing a sentence into the words that make it up.

  But this doesn’t explain per se how eight-month-olds already begin to form a vast repertoire of words, many of which they don’t even know how to define. In order to do this, the brain uses a principle similar to the one many sophisticated computers employ to detect patterns, known as statistical learning. The recipe is simple and identifies the frequency of transitions between syllables and function. Since the word hello is used frequently, every time the syllable ‘hel’ is heard, there is a high probability that it will be followed by the syllable ‘lo.’ Of course, these are just probabilities, since sometimes the word will be helmet or hellraiser, but a child discovers, through an intense calculation of these transitions, that the syllable ‘hel’ has a relatively small number of frequent successors. And so, by forming bridges between the most frequent transitions, the child can amalgamate syllables and discover words. This way of learning, obviously not a conscious one, is similar to what smartphones use to complete words with the extension they find most probable and feasible; as we know, they don’t always get it right.

  This is how children learn words. It is not a lexical process as if filling a dictionary in which each word is ass
ociated with its meaning or an image. To a greater extent, the first approach to words is rhythmic, musical, prosodic. Only later are they tinged with meaning. Marina Nespor, an extraordinary linguist, suggests that one of the difficulties of studying a second language in adulthood is that we no longer use that process. When adults learn a language, they usually do so deliberately and by using their conscious apparatus; they try to acquire words as if memorizing them from a dictionary and not through the musicality of language. Marina maintains that if we were to imitate the natural mechanism of first consolidating the words’ music and the regularities in the language’s intonation, our process of learning would be much simpler and more effective.

  The children of Babel

  One of the most passionately debated examples of the collision between biological and cultural predispositions is bilingualism. On one hand, a very common intuitive assumption is: ‘Poor child, just learning to talk is difficult, the kid’s gonna get all mixed up having to learn two languages.’ But the risk of confusion is mitigated by the perception that bilingualism implies a certain cognitive virtuosity.

  Bilingualism, actually, offers a concrete example of how some social norms are established without the slightest rational reflection. Society usually considers monolingualism to be the norm, so that the performance of bilinguals is perceived as a deficit or an increment in relation to it. That is not merely convention. Bilingual children have an advantage in the executive functions, but this is never perceived as a deficit in monolinguals’ potential development. Curiously, the monolingual norm is not defined by its popularity; in fact, most children in the world grow up being exposed to more than one language. This is especially true in countries with large immigrant populations. In these homes, languages can be combined in all sorts of forms. As a boy, Bernardo Houssay (later awarded the Nobel Prize for Physiology) lived in Buenos Aires, Argentina (where the official language is Spanish) with his Italian grandparents. His parents spoke little of their parents’ language, and he and his brothers spoke none. So he believed that people, as they aged, turned into Italians.

  Cognitive neuroscientific research has conclusively proven that, going against popular belief, the most important landmarks in language acquisition–the moment of comprehending the first words, the development of sentences, among others–are very similar in monolinguals and bilinguals. One of the few differences is that, during infancy, monolinguals have a bigger vocabulary. However, this effect disappears–and even reverts–when the words a bilingual can use in both languages are added to that vocabulary.

  A second popular myth is that one shouldn’t mix languages and that each person should speak to a child always in the same language. That is not the case. Some studies in bilingualism are conducted with parents who each speak one language exclusively to their children, which is very typical in border regions, such as where Slovenia meets Italy. In other studies, in bilingual regions such as Quebec or Catalonia, both parents speak both languages. The developmental landmarks in these two situations are identical. And the reason why the babies don’t get confused by one person speaking two languages is because, in order to produce the phonemes of each language, they give gesticular indications–the way they move their mouths and face–of which language they are speaking. Let’s say that one makes a French or an Italian facial expression. These are easy clues for a baby to recognize.

  On the other hand, another large group of evidence indicates that bilinguals have a better and faster development of the executive functions; more specifically, in their ability to inhibit and control their attention. Since these faculties are critical in a child’s educational and social development, the advantage of bilingualism now seems quite obvious.

  In Catalonia, children grow up in a sociolinguistic context in which Spanish and Catalan are often used in the same conversation. As a consequence, Catalan children develop skills to shift rapidly from one language to the other. Will this social learning process extend to task-switching beyond the domain of language?

  To answer this question, César Ávila with his colleagues compared brain activity of monolinguals and Catalan bilinguals who switched between non-linguistic tasks. Participants saw a sequence of objects flashing rapidly in the centre of a screen. For a number of trials they were asked to respond with a button if the object was red, and with another button if it was blue. Then, suddenly, participants were asked to forget about colour and respond using the same buttons about the shape of the object (right button for a square and left button for a circle).

  As simple as this sounds, when task instructions switch from colour to shape most people respond more slowly and make more errors. This effect is much smaller in Catalonian bilinguals. Ávila also found that the brain networks used by monolinguals and bilinguals to solve this task are very different. It is not that bilinguals are just increasing slightly the amount of activity in one region; it is that the problem in the brain is solved in an altogether different manner.

  To switch between tasks, monolinguals use brain regions of the executive system such as the anterior cingulate and some regions in the frontal cortex. Bilinguals instead engage brain regions of the language network, the same regions they engage to switch between Spanish and Catalan in a fluid conversation.

  This means that in task-switching, even if the tasks are nonlinguistic (in this case switching between colour and shape), bilinguals engage brain networks for language. Which is to say, bilinguals can recycle those brain structures that are highly specialized for language in monolinguals, and use them for cognitive control beyond the domain of language.

  Speaking more than one language also changes the brain’s anatomy. Bilinguals have a greater density of white matter–bundles of neuronal projections–in the anterior cingulate than monolinguals do. And this effect doesn’t pertain only to those who learned more than one language during childhood. It is a characteristic that has been seen also in those who became bilingual later in life, and as such it might be particularly useful in old age, because the integrity of the connections is a decisive element in cognitive reserve. This explains why bilinguals, even when we factor in age, socioeconomic level and other relevant factors, are less prone to developing senile dementias.

  To sum up, the study of bilingualism allows us to topple two myths: language development doesn’t slow down in bilingual children, and the same person can mix languages with no problem. What’s more, the effects of bilingualism may go above and beyond the domain of language, helping develop cognitive control. Bilingualism helps children to be captains of their own thought, pilots of their existence. This ability is decisive in their social inclusion, health and future. So perhaps we should promote bilingualism. Amidst so many less effective and more costly methods of stimulating cognitive development, this is a much simpler, beautiful and enduring way to do so.

  A conjecturing machine

  Children, from a very young age, have a sophisticated mechanism for seeking out and building knowledge. We were all scientists in our childhood,* and not only out of a desire to explore, to break things apart to see how they work–or used to work–or to pester adults with an infinite number of questions beginning ‘Why?’ We were also little scientists because of the method we employed to discover the universe.

  Science has the virtue of being able to construct theories based on scant, ambiguous data. From the paltry remnants of light from some dead stars, cosmologists were able to build an effective theory on the origin of the universe. Scientific procedure is especially effective when we know the precise experiment to discriminate between different theories. And kids are naturally gifted at this job.

  A game with buttons (push buttons, keys or switches) and functions (lights, noise, movement) is like a small universe. As they play, children make interventions that allow them to reveal mysteries and discover the causal rules of that universe. Playing is discovering. In fact, the intensity of a child’s game depends on how much uncertainty the child has with regard to the rules that govern
it. And when children don’t know how a simple machine works, they usually spontaneously play in the way that is most effective to discover its functioning mechanism. This is very similar to a precise aspect of the scientific method: investigation and methodical exploration in order to discover and clarify causal relationships in the universe.

  But children’s natural exploration of science goes even further: they construct theories and models according to the most plausible explanation for the data they observe.

  There are many examples of this, but the most elegant begins in 1988 with an experiment by Andrew Meltzoff–again–which produced the following scene. An actor enters a room and sits in front of a box with a large plastic button, pushes the button with their head and, as if the box were a slot machine paying out, there is a fanfare with colourful lights and sounds. Afterwards, a one-year-old baby who has been observing the scene is seated, on their mother’s lap, in front of the same machine. And then, spontaneously, the young child leans forward and presses the button with their head.

  Did they simply imitate the actor or had the one-year-old discovered a causal relationship between the button and the lights? Deciding between these two possibilities would require a new experiment like the one proposed by the Hungarian psychologist György Gergely, fourteen years later. Meltzoff thought that the babies were imitating the actor when they pressed the button with their head. Gergely had another, much bolder and more interesting idea. The babies understand that the adult is intelligent and, because of that, if they didn’t push the button with their hand, which would be more natural, it was because pushing it with their head was strictly necessary.

 

‹ Prev