The Economics of Artificial Intelligence

Home > Other > The Economics of Artificial Intelligence > Page 106
The Economics of Artificial Intelligence Page 106

by Ajay Agrawal

matrix factorization, 51, 511

  judgment and decision- making (JDM)

  meta technologies, 153

  research, 596– 98

  ML. See machine learning (ML)

  model averaging, 511

  knowledge creation, 477– 79

  MOOCS (massive open online courses),

  knowledge externalities, and artifi cial intel-

  181

  ligence, 470– 71

  knowledge spillovers, 479

  neural networks, 72– 74, 123, 124– 25, 510,

  511

  labor: comparative advantage of, and new

  new economic geography (NEG), 479– 80

  tasks, 217– 18; model of demand for,

  211– 14

  online marketplaces, using artifi cial intelli-

  labor demand, technology and, 214– 21

  gence to promote trust in, 576– 81

  labor productivity growth, technologies and,

  optical lenses, invention of, 121

  26– 28

  optimism, sources of technological, 24– 26

  learning by doing, 412– 13

  liability, innovation and, 494; empirical evi-

  Pareto improvement, 363

  dence on, 496– 98; theoretical model of,

  patent systems, deep learning and, 142

  494– 96

  Pen Register Act (1986), 456

  liability, tort, development of artifi cial intel-

  policy analysis, using methods of prediction

  ligence technologies and, 498– 502

  for, 516– 19

  political economy: of artifi cial intelligence,

  machine learning (ML), 3, 24– 25; applica-

  11; of income redistribution, 394– 95;

  tions of, 401– 2; defi ned, 509– 10;

  of technological disruptions, 176– 79

  double, 523– 24; early use cases of, 510–

  prediction: in absence of judgment, 101– 2;

  15; for fi nding behavioral variables,

  artifi cial intelligence as tool for, 16– 17;

  587– 96; general purpose, 67– 71; human

  as complements/ substitutes to judg-

  prediction as imperfect, 496– 603; im-

  ment, 102– 3; costs of, and AI, 92– 93;

  pact of, 12– 13, 15– 17, 507– 9; incentive

  judgment and, 91– 92; using methods

  auctions and, 569– 76; new literature

  of, in policy analysis, 516– 19

  on, 519– 34; overview, 399– 406; predic-

  premature deindustrialization, 393– 94

  tions about impact of on economics,

  price discrimination, artifi cial intelligence

  534– 42; regulation and, 12– 15; super-

  and, 604

  vised, 511– 12; unsupervised, 510– 11;

  principal components analysis, 74, 92,

  vertical integration and, 408– 9. See also

  510

  artifi cial intelligence (AI)

  privacy, 13– 14; artifi cial intelligence and,

  Subject Index 629

  425– 26; current models of economics

  search frictions, artifi cial intelligence for

  and, 424– 25; data spillovers and, 431.

  reducing, 581– 83

  See also consumer privacy

  security policy, 416

  privacy policy, 416– 17

  singularities, 253– 61; examples of techno-

  privacy regulation, trade policies and,

  logical, 254– 58; objections to, 258– 61

  482– 85

  skills: mismatch of technologies and, 221–

  privileged access to government data, trade

  23; technologies and, 209

  policies and, 486– 87

  Solow paradox, 24; potential explanations

  production, automation of, and artifi cial

  for, 28– 31

  intelligence, 239– 50

  source code, trade policies and, 487– 88

  productivity: automation and, 210– 11; miss-

  spectrum reallocation, 569– 76, 572f

  ing growth of, and new technologies,

  spillovers, data, 431

  223– 26

  spreadsheet software, invention and impact

  productivity eff ects, 198, 203– 4, 214– 16

  of, 90

  productivity growth: low current, reasons

  stochastic gradient descent optimization,

  why it is consistent with future techno-

  77– 81

  logical growth, 41– 44; rates of, tech-

  strategic trade policy, 473– 74

  nologies and, 26– 28; slow, and future

  structural change, 293– 96

  productivity growth, 31– 36

  structural models, 532– 34

  productivity optimism, technology- driven

  superstar scientists, role of, 474– 76

  case for, 36– 39

  supervised machine learning, 511; methods

  for, 511– 12

  radiology, case of, 94– 95

  supplementary analysis, 530

  random forest, 511

  support vector machines, 511

  R&D. See research and development (R&D)

  symbolic processing hypothesis, 123

  recommender systems, 603

  symbolic systems, 123

  regional clusters, theory of, 479

  regression trees, 511

  tasks, new, 205– 7; comparative advantage

  regularization on norm of matrix, 510

  of labor and, 217– 18; creation of, 198;

  regularized regression, 511

  model of, 211– 14

  regulation, 12– 15; machine learning and,

  technological changes: factor- biased, 376–

  12– 15

  77; and levels of employment, 220– 21;

  reinforcement learning, 25, 66, 81– 84, 400–

  types of, 212– 13

  401

  technological disruptions, political economy

  reinstatement eff ect, 8, 198, 206

  of, 176– 79

  research and development (R&D), 336; pro-

  technological growth, reasons why it is con-

  ductivity, eff ects of rise in, 341– 43

  sistent with low current productivity

  research tools, economics of new, 118– 22

  growth, 41– 44

  robotics, 123– 24; tort law and, 493– 94.

  technological optimism, sources of, 24– 26

  See also robots

  technological progress: channels of inequal-

  robots, studies on, 554– 55. See also robotics

  ity and, 365– 70; determining scenarios

  Romer/ Jones knowledge production func-

  that best describe economy, 363– 64;

  tion, 151– 52

  endogenous, 364– 65; fi rst- best scenario,

  353– 56; imperfect markets scenario,

  scale, economies of, and artifi cial intelli-

  361– 62; perfect markets but costly

  gence, 470

  redistribution scenario, 358– 61; perfect

  Schumpeterian model with artifi cial intel-

  markets ex post and no costs of redis-

  ligence, 276– 79

  tribution scenario, 356– 58; welfare and,

  scientifi c discovery, rate of, 6

  353– 65; worker- replacing, redistribu-

  scientists, role of, 472– 73; superstar, 474– 76

  tion and, 370– 77

  scope, economies of, and artifi cial intel-

  technological singularities, examples of,

  ligence, 470

  254– 58

  630 Subject Index

  technological unemployment, 377– 81

  universal basic income (UBI), 312– 14; cost
r />   technologies: future progress of, and low

  of replacing current safety net with,

  current productivity growth, 41– 44;

  325– 26

  labor demand and, 214– 21; mismatch

  unsupervised machine learning, 510– 11

  of skills and, 221– 23; skills and, 209

  USA Patriot Act (2001), 456

  technology- driven economic growth, pros-

  pects for, 149– 53

  vertical integration, machine learning and,

  tort law, robotics and, 493

  408– 9

  tort liability, 14

  vertical research spillovers, 122

  total factor productivity growth, 32

  trade models, basic, 476– 77

  wages, automation and, 200– 211

  trade policies: data localization rules and,

  welfare, technological progress and, 353– 65

  485– 86; industrial and strategic, case

  work, automation and, 200– 211

  for, 471– 81; industrial regulation and,

  worker- replacing technological progress:

  487; privacy regulation and, 482– 85;

  dynamic implications of, 373– 74; redis-

  privileged access to government data

  tributing innovators’ surplus and, 374–

  and, 486– 87; role of university- related

  76; redistribution and, 370– 77; static

  talent, 472– 76; source code and, 487–

  pecuniary externalities of, 371– 72

  88; strategic, 473– 74

  Zeira model of automation and growth,

  UBI. See universal basic income (UBI)

  239– 41

  unemployment, technological, 377– 81

  “zero- shot” learning systems, 66

  Document Outline

  Contents

  Acknowledgments

  Introduction / Ajay Agrawal, Joshua Gans, and Avi Goldfarb

  I. AI as a GPT 1. Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics / Erik Brynjolfsson, Daniel Rock, and Chad Syverson, Comment: Rebecca Henderson

  2. The Technological Elements of Artificial Intelligence / Matt Taddy

  3. Prediction, Judgment, and Complexity: A Theory of Decision-Making and Artificial Intelligence / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, Comment: Andrea Prat

  4. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis / Iain M. Cockburn, Rebecca Henderson, and Scott Stern, Comment: Matthew Mitchell

  5. Finding Needles in Haystacks: Artificial Intelligence and Recombinant Growth / Ajay Agrawal, John McHale, and Alexander Oettl

  6. Artificial Intelligence as the Next GPT: A Political-Economy Perspective / Manuel Trajtenberg

  II. Growth, Jobs, and Inequality 7. Artificial Intelligence, Income, Employment, and Meaning / Betsey Stevenson

  8. Artificial Intelligence, Automation, and Work / Daron Acemoglu and Pascual Restrepo

  9. Artificial Intelligence and Economic Growth / Philippe Aghion, Benjamin F. Jones, and Charles I. Jones, Comment: Patrick Francois

  10. Artificial Intelligence and Jobs: The Role of Demand / James Bessen

  11. Public Policy in an AI Economy / Austan Goolsbee

  12. Should We Be Reassured If Automation in the Future Looks Like Automation in the Past? / Jason Furman

  13. R&D, Structural Transformation, and the Distribution of Income / Jeffrey D. Sachs

  14. Artificial Intelligence and Its Implications for Income Distribution and Unemployment / Anton Korinek and Joseph E. Stiglitz

  15. Neglected Open Questions in the Economics of Artificial Intelligence / Tyler Cowen

  III. Machine Learning and Regulation 16. Artificial Intelligence, Economics, and Industrial Organization / Hal Varian, Comment: Judith Chevalier

  17. Privacy, Algorithms, and Artifi cial Intelligence / Catherine Tucker

  18. Artificial Intelligence and Consumer Privacy / Ginger Zhe Jin

  19. Artificial Intelligence and International Trade / Avi Goldfarb and Daniel Trefler

  20. Punishing Robots: Issues in the Economics of Tort Liability and Innovation in Artificial Intelligence / Alberto Galasso and Hong Luo

  IV. Machine Learning and Economics 21. The Impact of Machine Learning on Economics / Susan Athey, Comment: Mara Lederman

  22. Artificial Intelligence, Labor, Productivity, and the Need for Firm-Level Data / Manav Raj and Robert Seamans

  23. How Artificial Intelligence and Machine Learning Can Impact Market Design / Paul R. Milgrom and Steven Tadelis

  24. Artificial Intelligence and Behavioral Economics / Colin F. Camerer, Comment: Daniel Kahneman

  Contributors

  Author Index

  Subject Index

 

 

 


‹ Prev