The Secret Life of Lobsters

Home > Other > The Secret Life of Lobsters > Page 9
The Secret Life of Lobsters Page 9

by Trevor Corson


  Bob wasn’t the first scientist to encounter this problem. Poring over books and journals in the library, Bob discovered that little was known about the behavior of the American lobster in the wild. But scientists had managed to learn some astonishing things about the way lobsters used habitat. In particular, lobsters boasted an impressive repertoire of excavating and remodeling skills. By spreading its mouthparts and front legs into the shape of a bulldozer blade, a lobster could shove sand or gravel from a burrow to enlarge it and erect barricades against intruders. Lobsters were also efficient stone movers. By carrying pebbles with their mouthparts or rolling larger chunks of rock, they built perimeter fences and blocked off strategic openings in a burrow.

  When faced with open terrain lacking natural crevices, a lobster was capable of creating its own burrow, though this was a time-consuming process. Like a dog digging for a bone, the lobster scratched the sand or mud out with its front legs and flung it back between its hind legs, where it piled up under its tail. Between bouts of digging, the lobster fanned its swimmerets to clear excess debris, a cloud of sand billowing out behind it. Lobsters were partial to a home with an escape hatch—an exit in the back that was small enough not to require constant defending, but that allowed the lobster to slip out in an emergency. If the crevice or hollow didn’t come equipped with a back door, the lobster would often excavate one.

  Bob chanced upon several papers written by Stanley Cobb, a marine biologist at the University of Rhode Island. Stan Cobb’s research suggested that the American lobster’s defensive strategy was governed partly by the desire to have its body touching things and partly by the desire to avoid light. The result was an affection for the coziest and gloomiest recesses of the seafloor, which provided defense not only against predators and other lobsters but also against the tidal currents that could rip through an underwater channel like blasts of air through a wind tunnel. Hiding under a flap of seaweed would suffice in a pinch, but a low-ceilinged rock hollow was best. Stan’s experiments with clear and opaque domes demonstrated that darkness was more important to lobsters than snugness, but a lobster under bright lights would rather back itself into a glass jar than wander in the open.

  Neglecting his urchins, snails, and limpets, Bob enlisted the help of several scuba divers and took a census of lobsters on the seafloor between Casco Bay and Penobscot Bay, near his office at the Darling Marine Center, the University of Maine’s coastal lab for ocean science in Walpole, Maine. It didn’t take long for Bob and his divers to realize that there were good neighborhoods for lobsters, where the population density was high, and bad neighborhoods, where lobsters were scarce. Not surprisingly, the good neighborhoods tended to be boulder fields with lots of nooks and crannies. The bad neighborhoods tended to be featureless bedrock or flat sediment with nowhere for a lobster to hide.

  Bob had earned his Ph.D. at Johns Hopkins University in ecology and evolution. He’d learned that an ecologist’s first job was to notice a pattern in nature and then simply to observe it for a while. Such patterns usually had to do with the distribution and abundance of organisms—where, and how many? Once Bob had observed a pattern to his satisfaction, his next task was to come up with a hypothesis about the natural process that might have created that pattern. Finally, in testing his hypothesis, he would try to identify a concrete mechanism in nature that was responsible for the process. The hope was thereby to gain some insight into how organisms had evolved, especially in relation to each other.

  It was a simple creed—patterns, processes, mechanisms—and examples were everywhere. When Bob, wearing shorts, strolled through a field and stumbled into a patch of thistle, his mind didn’t stop at “Ouch.” The thorns drew his attention to the pattern of distribution and abundance of different plants in the field. That suggested a process—grazing by animals. The mechanism that drove the process was the mouth of the animal, the tongue and flattened teeth evolved perfectly for munching grass. In turn, the perfect defense against that mouth was to evolve thorns. Thistle could take over a field because it had become more resistant to grazing than other plants. It hadn’t taken Bob long to realize that the only constant in his line of work was that populations of organisms were always in flux.

  Now Bob had noticed a pattern in the distribution and abundance of lobsters. The seafloor had good lobster neighborhoods and bad ones. Bob wondered if the terrain of the seafloor itself might even control the number of lobsters that could live in a given area. Young lobsters might need swaths of small rocks for hiding, older lobsters bigger boulders. Lacking either, they would jog off in search of more protective terrain.

  Bob sawed up more PVC pipe and built additional lobster neighborhoods on the sediment. He had commandeered a leaky old houseboat from the Darling Marine Center, and now he anchored it above his arrays of pipes. Bob set up a generator on the boat and ran a video cable into the water. On the bottom it was attached to a miniature ROV—a remotely operated vehicle—with tiny propellers, low-intensity lights, and video cameras, none of which bothered the lobsters. Instead of distracting the animals with his scuba bubbles, Bob could sit aboard the houseboat all night long, hunched over the glow from a television set, and fly the ROV over the bottom to watch what the lobsters were doing in the neighborhoods he’d built for them.

  The new house on Little Cranberry Island was white with blue trim, square and snug, set back from the road at an angle. Bruce Fernald put his arm around Barb as they gazed at it. They could hardly believe it was finished. They’d hired a couple of friends to build most of the house, one of them an island contractor and the other Bruce’s former sternman with the predisposition for puking. The man was much happier on a roof than in a boat.

  Bruce and Barb had assisted with the construction of the house by pounding nails and painting. Barb planned to plant a garden in front. Bruce had outfitted the back with a basement entryway for carrying his lobster traps, buoys, and coils of rope in and out. The living room was cozy, with a low ceiling for easy heating. In the kitchen, sunlight streamed onto the breakfast table by the window. Next to the sink was a VHF marine radio, and from the roof rose an antenna so Barb, now retired from lobstering, could call Bruce on the boat. The house was nestled in a stand of spruce that served as a buffer against winter winds. The blanket of trees stretched for half a mile down the road to the island’s seaward beach, where a barricade of gray cobblestones kept the ocean at bay. Two or three of the island’s other young lobstermen had built houses nearby.

  The wedding took place in July 1979, on what began as a foggy day. As people gathered on a lawn by the shore facing Mount Desert Island, the fog lifted, leaving a lacework of clouds hung like a bridal veil, curving with the contours of the Mount Desert hills. Bruce, solid and beaming, sailed across the grass in a trim three-piece suit of sky blue. Barb, elegant and giddy, was at his side in an off-white eyelet dress with a camisole top. She clutched a bouquet of island daisies and roses in one hand and Bruce’s forearm in the other. Virtually the entire island community encircled them on the lawn. After the ceremony a metal skiff with an outboard motor pulled up to the rocky beach and took Bruce and Barb on a joyride around a neighboring island. July was the beginning of the trapping season, and for now a boat ride was all the honeymoon Bruce and Barb would get.

  The wedding was a joyous celebration for the community, but back aboard their fishing boats the young lobstermen of Little Cranberry worried. They knew that seventy-five miles down the coast, scientists at Maine’s Department of Marine Resources had been studying the lobster population. The Little Cranberry lobstermen were finding plenty of lobsters in their traps. Nonetheless, the scientists’ prognosis for the future was not good.

  To find out how the lobster population was faring, scientists at Maine’s Department of Marine Resources had tagged and released lobsters and then put up “wanted” posters at the docks, asking fishermen to report those animals if they were caught—a clue to the rate at which lobsters ended up in traps. In addition, the scientists ha
uled some lobster traps of their own and analyzed the catch. They also traveled the coast, recording the size of the lobsters that fishermen sold at the wharf. Back in the lab, they dissected big and small lobsters to determine the size at which a lobster’s reproductive organs became functional. And they noted the size of the lobsters that extruded eggs while in captivity, to determine how large a female lobster had to grow before she was capable of bearing young.

  The scientists made two crucial findings. First, if their statistics were correct, the lobster industry’s annual harvest was composed overwhelmingly of lobsters that had just molted up to the minimum legal size. In Maine the smallest legal lobster was defined as an animal whose “carapace length” was at least three and three-sixteenths inches. In the 1800s lobsters had been measured from the tip of the bony spike between the animal’s eyes to the end of its tail flippers, but this definition had proved too easy for fishermen to fudge. In 1907 the method was changed to the length of the carapace, which is the single large section of shell that encompasses the lobster’s thorax—often referred to by restaurant-goers as the “body” of the animal, to distinguish it from the meat-filled “tail.” To measure the carapace, a lobsterman would line up one end of his “gauge”—the brass ruler he carried aboard his boat—at the lobster’s eye socket and measure back to the edge of the carapace. When a lobster had molted to become large enough to pass this minimum-size mark, it weighed, on average, just under a pound—a meal of modest proportions.

  The scientists discovered that ninety out of every hundred lobsters that fishermen brought to the dock each year were these modest-sized animals, only just big enough to meet the measure. The other ten lobsters would be just one or two molt increments larger. With lobstermen saturating the seafloor with traps as never before, the scientists believed that few lobsters made it through the gauntlet of fishing gear to grow much bigger than the minimum size.

  The second finding had to do with how soon lobsters became sexually mature, and it lent an ominous cast to the first finding. The geographic range of the American lobster extends from North Carolina to northern Labrador, near Greenland. In southern latitudes where the ocean is warm, the reproductive organs of lobsters begin functioning at a smaller body size than in northern latitudes. In Long Island Sound, for instance, at a carapace length of three and three-sixteenths inches nearly all female lobsters have reached puberty and are capable of mating and extruding eggs. In the colder waters of the Gulf of Maine, however, the scientists calculated that only 6 percent of females were sexually mature at Maine’s minimum legal size.

  Combined, the two findings pointed to a devastating conclusion. Hardly any female lobsters in Maine got the chance to reach puberty—let alone mate and make eggs—before they ended up on someone’s dinner plate. With fishing on the increase and catches in decline, the situation seemed grim. In the Gulf of Maine, the American lobster could well be teetering on the verge of a disastrous collapse.

  If so, the number of lobster young in the ocean needed a revitalizing boost. By the early 1980s the scientists were pushing a plan to raise the minimum carapace length from three and three-sixteenths inches to three and a half inches. As a result of this larger minimum size, they calculated, the fraction of females capable of making eggs would jump from 6 percent to 60 percent.

  Lobstermen couldn’t think of a worse idea. Instead of weighing less than a pound, a lobster with a three-and-a-half-inch carapace would weigh at least a pound and a quarter. At the restaurants and retail outlets where summer vacationers purchased their lobsters, a pound and a quarter was the weight that separated small “chicken” lobsters from “selects.” Chickens—or chix as lobstermen called them—could be bought by consumers on the cheap and were thought to be popular for clambakes and informal festivities, while selects were pricier. If the scientists’ recommendations were followed, the cost of a typical lobster dinner on the Maine coast might rise by several dollars.

  With much of Maine’s catch consisting of chicken lobsters, lobstermen worried that they could lose the lucrative market for chix to their competitors in Canada. They also worried that implementing the new policy would cost them most of their catch for a couple of years while they waited for the first round of lobsters to grow up to the new minimum size.

  At Little Cranberry Island, Bruce Fernald had a construction loan to pay off and Jack Merrill had sunk so much money into his new forty-foot boat that he’d christened her the Bottom Dollar. Bruce and Jack feared that if the scientists had their way, hard times could hit the island. More to the point, they didn’t think boosting the egg supply was necessary in the first place. They were cutting V-notches in plenty of female lobsters, and they saw those female lobsters repeatedly making eggs. To the young lobstermen the future looked promising. It did to the older lobstermen too.

  Warren Fernald headed down the coast to a meeting and learned that lobstermen from other parts of the state were equally upset. Some had coined a name for the lobster scientists. The “bug hunters,” they said, were wrong.

  At the meeting Warren encountered Maine’s commissioner of marine resources. They’d met before, and the commissioner considered Warren one of the friendliest fishermen he knew.

  “I challenge you,” Warren said, “to come to my island. You’re invited to stay at my house overnight, and my wife Ann and I will feed you supper, and you can haul traps with me the next day.”

  The commissioner took Warren up on his offer. In the morning Warren woke him at five thirty. Aboard the Mother Ann, Warren made the commissioner stuff bait bags and empty traps. They spent most of the day throwing lobsters back into the sea. The shorts, eggers, notchers, and oversize lobsters that Warren tossed overboard far outnumbered the lobsters that he plopped into his barrel of keepers.

  The commissioner was impressed by Warren’s efforts at conservation. He hadn’t known that fishermen like Warren threw so many lobsters back.

  “How the hell would you?” Warren said, grinning. “Up there in your office, how would you know what was in these traps?”

  For Bob Steneck, camping out in the Darling Marine Center’s leaky houseboat all night to watch lobsters was nothing new. Bob had been putting his own life on hold to probe the mysteries of nature for as long as he could remember.

  As a boy Bob had loved the trips to his grandparents’ house on the lake, but he was less fond of the obligatory social calls on family friends and relatives. Instead of visiting indoors he would crawl on his hands and knees into the bushes outside, scanning for the sandy funnels that betrayed the dens of ant lions. Also referred to as doodlebugs, for the meandering trails they left while searching for a location to dig, ant lions waited with terrible clawlike jaws at the bottom of their excavated funnels for hapless insects to fall in. Bob would help secure a supply of doomed ants, but if none were handy, the lion could be tricked into attacking a rolling pebble.

  Later Bob joined the junior birding club, and when he moved to Ohio to attend college in 1969, he met an elderly professor of natural history who taught him ornithology. Developing a passion for ducks, Bob mentioned to his professor that he’d love to see some wood ducks. The next morning Bob’s professor picked him up before dawn, drove through the darkness, and pulled over on a deserted shoulder. The older man disappeared into the underbrush on his hands and knees. Bob followed. After a long crawl they reached the edge of a swamp. It was deserted and Bob began to fidget, but five minutes later a pair of wood ducks flew in and landed a few feet away.

  The passion for ducks passed, but Bob had learned a valuable lesson that morning. If you searched with persistence, and observed with a keen eye, Mother Nature would eventually reveal her secrets. In the Caribbean, Bob had spent an entire year living in the pontoon of a trimaran sailboat, diving daily to study algae. Now he was camping aboard the University of Maine’s houseboat to watch lobsters all night, and in the face of his vigilance the lobsters were yielding clues to their behavior. But they weren’t the clues Bob had expected.
/>   Bob already knew that lobsters fought with each other over access to shelters, and that evictions in lobster neighborhoods were common. In Stan Cobb’s lab at the University of Rhode Island, one of Stan’s graduate students had watched lobsters negotiating for ownership of the more desirable shelters in the tanks. Often the evictions were decorous, even polite—especially when the evicting lobster had an overwhelming size advantage. The larger lobster would approach the entrance and rap lightly on the resident’s claw, as though knocking on a door. The bigger animal would then spin sideways and walk backward about a body length, making room for the evictee to emerge. The smaller lobster would exit the home, turn to face the intruder, and retreat. As the small lobster backed up, the large lobster would walk forward. Once the large lobster had passed the entrance to the shelter, it would stop and back in, claiming the home for itself. It was a carefully choreographed dance.

  When two lobsters were more evenly matched the resident was less willing to surrender its home. Some intruders pushed their way in through the door and shoved, boxed, or snapped at the resident before retreating to let it vacate. Others dispensed with the preliminary encounter and simply backed in, forcing the tough armor of their tail into the resident’s face. This was a tactic shared with the California mantis shrimp. A male mantis shrimp will try to evict a male resident of a burrow by presenting its tail. The resident will strike at it with its claw before turning around to have its own tail struck—essentially, male dominance determined by spanking. New England’s lobsters were more reserved. If presented with a tail, the resident lobster would step out of the shelter and turn back to contest the eviction, having now lost the advantage of residency.

 

‹ Prev