Collapse: How Societies Choose to Fail or Succeed

Home > Other > Collapse: How Societies Choose to Fail or Succeed > Page 49
Collapse: How Societies Choose to Fail or Succeed Page 49

by Jared Diamond


  If all that were not enough, under way in China are the world’s largest development projects, all expected to cause severe environmental problems. The Three Gorges Dam of the Yangtze River—the world’s largest dam, started in 1993 and projected for completion in 2009—aims to provide electricity, flood control, and improved navigation at a financial cost of $30 billion, social costs of uprooting millions of people, and environmental costs associated with soil erosion and the disruption of a major ecosystem (that of the world’s third longest river). Still more expensive is the South-to-North Water Diversion Project, which began in 2002, is not scheduled for completion until around 2050, and is projected to cost $59 billion, to spread pollution, and to cause water imbalance in China’s longest river. Even that project will be exceeded by the projected development of currently underdeveloped western China, making up over half of the country’s land area and viewed by China’s leaders as the key to national development.

  Let’s now pause to distinguish, as elsewhere in this book, between consequences for animals and plants by themselves, and consequences for people. Recent developments in China are clearly bad news for Chinese earthworms and yellow croakers, but how much difference does it all make for Chinese people? The consequences for them can be partitioned into economic costs, health costs, and exposure to natural disasters. Here are some estimates or examples for each of those three categories.

  As examples of economic costs, let’s start with small ones and proceed to larger ones. A small cost is the mere $72 million per year being spent to curb the spread of a single weed, the alligator weed that was introduced from Brazil as pig forage and escaped to infest gardens, sweet potato fields, and citrus groves. Also a bargain is the annual loss of just $250 million arising from factory closures due to water shortages in a single city, Xian. Sandstorms inflict damage of about $540 million per year, and losses of crops and forests due to acid rain amount to about $730 million per year. More serious are the $6 billion costs of the “green wall” of trees being built to shield Beijing against sand and dust, and the $7 billion per year of losses created by pest species other than alligator weed. We enter the zone of impressive numbers when we consider the onetime cost of the 1996 floods ($27 billion, but still cheaper than the 1998 floods), the annual direct losses due to desertification ($42 billion), and the annual losses due to water and air pollution ($54 billion). The combination of the latter two items alone costs China the equivalent of 14% of its gross domestic product each year.

  Three items may be selected to give an indication of health consequences. Average blood lead levels in Chinese city-dwellers are nearly double the levels considered elsewhere in the world to be dangerously high and to put at risk the mental development of children. About 300,000 deaths per year, and $54 billion of health costs (8% of the gross national product), are attributed to air pollution. Smoking deaths amount to about 730,000 per year and are rising, because China is the world’s largest consumer and producer of tobacco and is home to the most smokers (320 million of them, one-quarter of the world’s total, smoking an average of 1,800 cigarettes per year per person).

  China is noted for the frequency, number, extent, and damage of its natural disasters. Some of these—especially dust storms, landslides, droughts, and floods—are closely related to human environmental impacts and have become more frequent as those impacts have increased. For instance, dust storms have increased in frequency and severity as more land has been laid bare by deforestation, overgrazing, erosion, and partly human-caused droughts. From A.D. 300 to 1950 dust storms used to afflict northwestern China on the average once every 31 years; from 1950 to 1990, once every 20 months; and since 1990, almost every year. The huge dust storm of May 5, 1993, killed about a hundred people. Droughts have increased because of deforestation interrupting the rain-producing natural hydrological cycle, and perhaps also because of the draining and overuse of lakes and wetlands and hence the decrease in water surfaces for evaporation. The area of cropland damaged each year by droughts is now about 60,000 square miles, double the annual area damaged in the 1950s. Flooding has greatly increased because of deforestation; the 1996 and 1998 floods were the worst in recent memory. The alternating occurrence of droughts and floods has also become more frequent and is more damaging than either disaster alone, because droughts first destroy vegetation cover, then floods on bare ground cause worse erosion than would have been the case otherwise.

  Even if China’s people had no connection through trade and travel with people elsewhere, China’s large territory and population would guarantee effects on other peoples merely because China is releasing its wastes and gases into the same ocean and atmosphere. But China’s connections to the rest of the world through trade, investment, and foreign aid have been accelerating almost exponentially in the last two decades, although trade (now $621 billion per year) was negligible before 1980 and foreign investment in China still negligible as recently as 1991. Among other consequences, the development of export trade has been a driving force behind increased pollution in China, because the highly polluting and inefficient little rural industries (the TVEs) that produce half of China’s exports in effect ship their finished products abroad but leave behind their pollutants in China. In 1991 China became the country annually receiving the second highest amount of foreign investment behind the U.S., and in 2002 China moved into first place by receiving record investments of $53 billion. Foreign aid between 1981 and 2000 included $100 million from international NGOs, a large sum as measured by NGO budgets but a paltry amount compared to China’s other sources: half a billion dollars from the United Nations Development program, $10 billion from Japan’s International Development Agency, $11 billion from the Asian Development Bank, and $24 billion from the World Bank.

  All of those transfers of money contribute to fueling China’s rapid economic growth and environmental degradation. Let’s now consider other ways in which the rest of the world influences China, then how China influences the rest of the world. These reciprocal influences are aspects of the modern buzzword “globalization,” which is important for the purposes of this book. The interconnectedness of societies in today’s world causes some of the most important differences (to be explored in Chapter 16) between how environmental problems played out in the past on Easter Island or among the Maya and Anasazi, and how they play out today.

  Among the bad things that China receives from the rest of the world, I already mentioned economically damaging invasive species. Another large-scale import that will surprise readers is garbage (Plate 27). Some First World countries reduce their mountains of garbage by paying China to accept untreated garbage, including wastes containing toxic chemicals. In addition, China’s expanding manufacturing economy and industries accept garbage/scrap that could serve as cheap sources of recoverable raw materials. Just to take one item as an example, in September 2002 a Chinese customs office in Zhejiang Province recorded a 400-ton shipment of “electronic garbage” originating from the U.S., and consisting of scrap electronic equipment and parts such as broken or obsolete color TV sets, computer monitors, photocopiers, and keyboards. While statistics on the amount of such garbage imported are inevitably incomplete, available numbers show an increase from one million to 11 million tons from 1990 to 1997, and an increase in First World garbage transshipped to China via Hong Kong from 2.3 to over 3 million tons per year from 1998 to 2002. This represents direct transfer of pollution from the First World to China.

  Even worse than garbage, while many foreign companies have helped China’s environment by transferring advanced technology to China, others have hurt it by transferring pollution-intensive industries (PIIs), including technologies now illegal in the country of origin. Some of these technologies are then in turn transferred from China to still less developed countries. As one example, in 1992 the technology for producing Fuyaman, a pesticide against aphids banned in Japan 17 years earlier, was sold to a Sino-Japanese joint company in Fujian Province, where it proceeded to poison
and kill many people and to cause serious environmental pollution. In Guangdong Province alone the amount of ozone-destroying chlorofluorocarbons imported by foreign investors reached 1,800 tons in 1996, thereby making it more difficult for China to eliminate its contribution to world ozone destruction. As of 1995, China was home to an estimated 16,998 PII firms with a combined industrial product of about $50 billion.

  Turning now from China’s imports to its exports in a broad sense, China’s high native biodiversity means that China gives back to other countries many invasive species that were already well adapted to competing in China’s species-rich environment. For instance, the three best-known pests that have wiped out numerous North American tree populations—the chestnut blight, the misnamed “Dutch” elm disease, and the Asian long-horned beetle—all originated in China or else somewhere nearby in East Asia. Chestnut blight already wiped out native chestnut trees in the U.S.; Dutch elm disease has been eliminating the elm trees that used to be a hallmark of New England towns while I was growing up there over 60 years ago; and the Asian long-horned beetle, first discovered in the U.S. in 1996 attacking maple and ash trees, has the potential for causing U.S. tree losses of up to $41 billion, more than those due to the other two of those pests combined. Another recent arrival, China’s grass carp, is now established in rivers and lakes of 45 U.S. states, where it competes with native fish species and causes large changes in aquatic plant, plankton, and invertebrate communities. Still another species of which China has an abundant population, which has large ecological and economic impacts, and which China is exporting in increasing numbers is Homo sapiens. For instance, China has now moved into third place as a source of legal immigration into Australia (Chapter 13), and significant numbers of illegal as well as legal immigrants crossing the Pacific Ocean reach even the U.S.

  While inadvertently or intentionally exported Chinese insects, freshwater fish, and people reach overseas countries by ship and plane, other inadvertent exports arrive in the atmosphere. China became the world’s largest producer and consumer of gaseous ozone-depleting substances, such as chlorofluorocarbons, after First World countries phased them out in 1995. China also now contributes to the atmosphere 12% of the world’s carbon dioxide emissions that play a major role in global warming. If current trends continue—emissions rising in China, steady in the U.S., declining elsewhere—China will become the world’s leader in carbon dioxide emissions, accounting for 40% of the world’s total, by the year 2050. China already leads the world in production of sulfur oxides, with an output double that of the U.S. Propelled eastwards by winds, the pollutant-laden dust, sand, and soil originating from China’s deserts, degraded pastures, and fallow farmland get blown to Korea, Japan, Pacific islands, and across the Pacific within a week to the U.S. and Canada. Those aerial particles are the result of China’s coal-burning economy, deforestation, overgrazing, erosion, and destructive agricultural methods.

  The next exchange between China and other countries involves an import doubling as an export: imported timber, hence exported deforestation. China ranks third in the world in timber consumption, because wood provides 40% of the nation’s rural energy in the form of firewood, and provides almost all the raw material for the paper and pulp industry and also the panels and lumber for the construction industry. But a growing gap has been developing between China’s increasing demand for wood products and its declining domestic supply, especially since the national logging ban went into effect after the floods of 1998. Hence China’s wood imports have increased six-fold since the ban. As an importer of tropical lumber from countries on all three continents that span the tropics (especially from Malaysia, Gabon, Papua New Guinea, and Brazil), China now stands second only to Japan, which it is rapidly overtaking. It also imports timber from the temperate zone, especially from Russia, New Zealand, the U.S., Germany, and Australia. With China’s entrance into the World Trade Organization, those timber imports are expected to increase even more, because tariffs on wood products are about to be reduced from a rate of 15-20% to 2-3%. In effect, this means that China, like Japan, will be conserving its own forests, but only by exporting deforestation to other countries, several of which (including Malaysia, Papua New Guinea, and Australia) have already reached or are on the road to catastrophic deforestation.

  Potentially more important than all of these other impacts is a rarely discussed consequence of the aspirations of China’s people, like other people in developing countries, to a First World lifestyle. That abstract phrase means many specific things to an individual Third World citizen: acquiring a house, appliances, utensils, clothes, and consumer products manufactured commercially by energy-consuming processes, not made at home or locally by hand; having access to manufactured modern medicines, and to doctors and dentists educated and equipped at much expense; eating abundant food grown at high production rates with synthetic fertilizers, not with animal manure or plant mulches; eating some industrially processed food; traveling by motor vehicle (preferably one’s own car), not by walking or bicycle; and having access to other products manufactured elsewhere and arriving by motor vehicle transport, not just to local products carried to consumers. All Third World peoples of whom I am aware—even those trying to retain or re-create some of their traditional lifestyle—also value at least some elements of this First World lifestyle.

  The global consequences of everybody aspiring to the lifestyle currently enjoyed by First World citizens are well illustrated by China, because it combines the world’s largest population with the fastest-growing economy. Total productions or consumptions are products of population sizes times per-capita production or consumption rates. For China, those total productions are already high because of its huge population, and despite its per-capita rates still being very low: for instance, only 9% of per-capita consumption rates of the leading industrial countries in the case of four major industrial metals (steel, aluminum, copper, and lead). But China is progressing rapidly towards its goal of achieving a First World economy. If China’s per-capita consumption rates do rise to First World levels, and even if nothing else about the world changed—e.g., even if population and production/consumption rates everywhere else remained unchanged—then that production/consumption rate increase alone would translate (as multiplied by China’s population) into an increase in total world production or consumption of 94% in that same case of industrial metals. In other words, China’s achievement of First World standards will approximately double the entire world’s human resource use and environmental impact. But it is doubtful whether even the world’s current human resource use and impact can be sustained. Something has to give way. That is the strongest reason why China’s problems automatically become the world’s problems.

  China’s leaders used to believe that humans can and should conquer Nature, that environmental damage was a problem affecting only capitalist societies, and that socialist societies were immune to it. Now, facing overwhelming signs of China’s own severe environmental problems, they know better. The shift in thinking began as early as 1972, when China sent a delegation to the First United Nations Conference on the Human Environment. The year 1973 saw the establishment of the government’s so-called Leading Group for Environmental Protection, which morphed in 1998 (the year of the great floods) into the State Environmental Protection Administration. In 1983 environmental protection was declared a basic national principle—in theory. In reality, although much effort has been made to control environmental degradation, economic development still takes priority and remains the chief criterion for evaluating government officials’ performance. Many environmental protection laws and policies that have been adopted on paper are not effectively implemented or enforced.

  What does the future hold for China? Of course, the same question arises everywhere in the world: the development of environmental problems is accelerating, the development of attempted solutions is also accelerating, which horse will win the race? In China this question has special urgency, not only be
cause of China’s already-discussed scale and impact on the world, but also because of a feature of Chinese history that may be termed “lurching.” (I use this term in its neutral strict sense of “swaying suddenly from side to side,” not in its pejorative sense of the gait of a drunk person.) By this metaphor, I am thinking of what seems to me the most distinctive feature of Chinese history, which I discussed in my earlier book Guns, Germs, and Steel. Because of geographic factors—such as China’s relatively smooth coastline, its lack of major peninsulas as large as Italy and Spain/Portugal, its lack of major islands as large as Britain and Ireland, and its parallel-flowing major rivers—China’s geographic core was unified already in 221 B.C. and has remained unified for most of the time since then, whereas geographically fragmented Europe has never been unified politically. That unity enabled China’s rulers to command changes over a larger area than any European ruler could ever command—both changes for the better, and changes for the worse, often in rapid alternation (hence “lurching”). China’s unity and decisions by emperors may contribute to explaining why China at the time of Renaissance Europe developed the world’s best and largest ships, sent fleets to India and Africa, and then dismantled those fleets and left overseas colonization to much smaller European states; and why China began, and then did not pursue, its own incipient industrial revolution.

  The strengths and risks of China’s unity have persisted into recent times, as China continues to lurch on major policies affecting its environment and its population. On the one hand, China’s leaders have been able to solve problems on a scale scarcely possible for European and American leaders: for instance, by mandating a one-child policy to reduce population growth, and by ending logging nationally in 1998. On the other hand, China’s leaders have also succeeded in creating messes on a scale scarcely possible for European and American leaders: for instance, by the chaotic transition of the Great Leap Forward, by dismantling the national educational system in the Cultural Revolution, and (some would say) by the emerging environmental impacts of the three megaprojects.

 

‹ Prev