EDAR-V370A explains a substantial part, but not all, of the physiological differences between East Asians and other races. Another feature that distinguishes most East Asians from Europeans and Africans has to do with earwax. This substance comes in two forms, wet and dry. The switch between the two types is controlled by two alleles of the gene ABCC11. The allele that causes dry earwax is very common in East Asia. Among the northern Han Chinese and Koreans, 100% of people have the dry allele. The percentage drops to 85% among the southern Han and to 87% in Japan.18
Almost all Europeans and all Africans have the wet earwax allele of the ABCC11 gene. This sharp differentiation of the two alleles implies a strong selection pressure. But the function of earwax, like flypaper, is merely to deter insects from crawling into the ear. It seems unlikely that so minor a role would be critical to survival. But as it happens, the two alleles of the ABCC11 are also involved in the apocrine sweat glands.
Unlike the eccrine sweat glands mentioned above, which are found all over the body and secrete just water, the apocrine glands in humans are restricted after birth to just the armpits, nipples, eyelids and other special niches. They make slightly oily secretions, and the specialty of those in the ear is to secrete earwax. The apocrine gland secretions are odorless at first but produce body odor after being decomposed by the bacteria ubiquitous on the skin.
East Asians with the dry earwax allele of the gene produce fewer secretions from their apocrine glands and as a result have less body odor. Among people spending many months in confined spaces to escape the cold, lack of body odor would have been an attractive trait and one perhaps favored by sexual selection.
Yet another East Asian characteristic is the type of skull known to physical anthropologists as Mongoloid. Mongoloid skulls have fine features, a broad head shape, and flattened faces. They also have a distinctive dentition. Africans and Europeans have the same kind of generic human teeth, which is evidently the ancestral pattern. In the East a new tooth pattern emerged, called sundadonty after Sunda, the Ice Age continent that disintegrated after the rise of sea level into Malaysia and the islands of Indonesia. Southeast Asians and the populations derived from them in Polynesia are sundadonts. Some 30,000 years ago, a variation of sundadonty appeared called sinodonty, in which the upper incisors are shovel shaped and some molar teeth have extra roots. Northern Chinese, Japanese and Native Americans, who are descended from Siberian populations, are all sinodonts.
Politically oriented scientists often proclaim that there are no distinct human races, seeking to imply, without actually saying so, that races do not exist. One reason that races exist, though not distinctly, is that the features characteristic of a race are often distributed along a gradient. Almost all northern Chinese have the sinodont pattern of dentition, but the farther one goes toward southern China and Southeast Asia, the greater the percentage of people who are sundadonts and the fewer who are sinodonts. The dry earwax allele is almost universal in northern China but yields to the wet allele toward the south. Most East Asians have the dry earwax gene, but not all do. Most, but not all, have the EDAR-V370A allele.
All these differences are variations superimposed on the common human theme. Even small differences in appearance can be of great social significance, given the strong human tendency to distinguish between the in-group and the out-group. Like the minor variations of language known as dialects, variations in skin or hair color can form the basis on which one group distinguishes itself from its neighbors. If intermarriage then ceases to occur across this fault line, other differences will accumulate, pushing human populations toward differentiation and away from remixing into a common genetic pool.
The Five Continental Races
Those who assert that human races don’t exist like to point to the many, mutually inconsistent classification schemes that have recognized anywhere from 3 to 60 races. But the lack of agreement doesn’t mean that races don’t exist, only that it is a matter of judgment as to how to define them. As with any species that evolves into geographically based races, there is usually continuity between neighboring races because of gene exchange between them. Because there is no clear dividing line, there are no distinct races—that is the nature of variation within a species. Nonetheless, useful distinctions can be made.
The first step in making sense of human variation and the emergence of races is to follow the historical succession of major population splits. As noted above, the first such split occurred when a small group of people left northeast Africa some 50,000 years ago and populated the rest of the world. The first major division in the human population is thus between Africans and non-Africans. (Africans here denotes people who live south of the Sahara, because those north of the Sahara are largely Caucasian.) Among the non-Africans, there was an early division, whose nature is still poorly understood, between Europeans and East Asians. This gives a three-way split in the human population that corresponds robustly to the three racial groups that everyone can identify at a glance, those of Africans, East Asians and Caucasians. The fact that other peoples may not be so easy to classify does not alter the validity of these three basic categories.
The first migration out of Africa, the one that gave rise to both Europeans and East Asians, eventually reached Sahul, the ancient Ice Age continent that was split by rising sea levels into the three landmasses of Australia, New Guinea and Tasmania. Australian aborigines, surprisingly, turn out to be a race unlike any other. They and their relatives in New Guinea have no trace in their genome of admixture with other races until the historical period. This implies that once Sahul was settled, some 46,000 years ago, the residents fought off all later migrations until the arrival of Europeans in the 18th century. Australian aborigines can reasonably be considered a race, although a minor one in terms of population size, because of their distinctness, antiquity and the fact that they inhabit a continent.
American Indians, the original inhabitants of North and South America, can also be considered a race. Their ancestors were Siberians who originally crossed into Alaska some 15,000 years ago, but American Indians have diverged considerably since then.
A practical way of classifying human variation is therefore to recognize five races based on continent of origin. These are the three principal races—Africans, East Asians and Caucasians—and the two other continent-based groups of Native Americans and Australian aborigines (including the people of New Guinea, an island joined to Australia until the end of the last ice age).
At the land boundaries where races meet, there are often intermarried or admixed populations, as geneticists call them. Palestinians, Somalis and Ethiopians, for instance, are admixtures of African and Caucasian populations. The Uigur Turks of northwestern China and the Hazara of Afghanistan are admixtures of Caucasian and East Asian populations. African Americans are an admixture mostly of Africans and Caucasians.
Within each continental race are smaller groupings which, to avoid terms like subrace or subpopulation, that might be assumed to imply inferiority, may be called ethnicities. Thus Finns, Icelanders, Jews and other groups with recognizable genetics are ethnicities within the Caucasian race.
Such an arrangement, of portioning human variation into five continental races, is to some extent arbitrary. But it makes practical sense. The three major races are easy to recognize. The five-way division matches the known events of human population history. And most significant of all, the division by continent is supported by genetics.
5
THE GENETICS OF RACE
Selfish and contentious people will not cohere, and without coherence nothing can be effected. A tribe rich in the above qualities would spread and be victorious over other tribes: but in the course of time it would, judging from all past history, be in its turn overcome by some other tribe more highly endowed. Thus the social and moral qualities would tend slowly to advance and be diffused throughout the world.
—CHARLES DARWIN1
In the case of human races, the genetic differences from one race to another are slight and subtle. One might expect that different races would have different genes, but they don’t. All humans, so far as is known, have the same set of genes. Each gene comes in various alternative forms, called alleles, so the next expectation might be that races would be distinguished by having different alleles of various genes. But this too is not how the system works. There are a mere handful of known cases where a particular allele of a gene occurs in only one race.
The genetic differences between human races turn out to be based largely in allele frequencies, meaning the percentages of each allele that occur in a given race. How a mere difference in allele frequencies could lead to differences in physical traits is explained below.
Races as Clusters of Variation
A necessary approach to studying racial variation is to look not for absolute differences but at how the genomes of individuals throughout the world cluster together in terms of their genetic similarity. The result is that everyone ends up in the cluster with which they share the most variation in common. These clusters always correspond to the five continental races in the first instance, though when extra DNA markers are used, the people of the Indian subcontinent sometimes split away from Caucasians as a sixth major group, and people of the Middle East as a seventh.
One of the first genetic clustering techniques depended on examining an element of the genome called tandem repeats. There are many sites on the genome where the same pair of DNA units is repeated several times in tandem. CA stands for the DNA unit known as a cytosine followed by adenine, so the DNA sequence CACACACA would be called a tandem CA repeat. The string of repeats occasionally confuses the DNA copying apparatus, which every few generations may add or drop a repeat unit during the copying process that has to occur before a cell can divide. Sites at which repeats occur therefore tend to be quite variable, and this variability is useful for comparing populations.
In 1994, in one of the earliest attempts to study human differentiation in terms of DNA differences, a research team led by Anne Bowcock of the University of Texas and Luca Cavalli-Sforza of Stanford University looked at CA repeats at 30 sites on the genome in people from 14 populations. Comparing their subjects on the basis of the number of CA repeats at each genomic site, the researchers found that people clustered together in groups that were coincident with their continent of origin. In other words, all the Africans had patterns of CA repeats that resembled one another, all the American Indians had a different pattern of repeats and so on. Altogether there were 5 principal clusters of CA repeats, formed by people living in each of the 5 continental regions of Africa, Europe, East Asia, the Americas and Australasia.2
Many larger and more sophisticated surveys have been done since, and all have come to the same conclusion, that “genetic differentiation is greatest when defined on a continental basis,” writes Neil Risch, a statistical geneticist at the University of California, San Francisco. “Effectively, these population genetic studies have recapitulated the classical definition of races based on continental ancestry—namely African, Caucasian (Europe and Middle East), Asian, Pacific Islander (for example, Australian, New Guinean and Melanesian), and Native American.” 3
In one of these more sophisticated studies, a team led by Noah Rosenberg of the University of Southern California and Marcus Feldman of Stanford University looked at the number of repeats at 377 sites on the genome of more than 1,000 people around the world. When this many sites are examined on a genome, it’s possible to assign segments of an individual’s genome to different races if he or she has mixed ancestry. This is because each race or ethnicity has a characteristic number of repeats at each genomic site.
The Rosenberg-Feldman study showed, as expected, that the 1,000 individuals in their study clustered naturally into five groups, corresponding to the five continental races. It also brought out the fact that several Central Asian ethnicities, such as Pathans, Hazara and Uigurs, are of mixed European and East Asian ancestry. This is not a surprise, given the frequent movement of peoples to and fro across Central Asia.
Language is often an isolating mechanism that deters intermarriage with neighboring groups. The Burusho, a people of Pakistan who speak a unique language, turn out also to be unlike their neighbors genetically. Within races, the Rosenberg-Feldman study showed that different ethnicities could be recognized. Among Africans, it is easy to distinguish by their genomes the Yoruba of Nigeria, the San (a click-speaking people of southern Africa) and the Mbuti and Biaka pygmies.
Many populations are not highly mixed, and the Rosenberg-Feldman survey confirmed the remarkable extent to which people throughout history have lived and died in the place where they were born.4
In the ancestral human population in Africa, a large number of alleles had developed for each gene over many generations. Those who migrated out of Africa took away only a sample of these alleles. And each time a new group split off, the number of alleles from the original population again decreased.
The farther away from Africa that this process continued, the less was the diversity of alleles. This downhill gradient happens with any population that expands too far from its origins to maintain the regular interbreeding that keeps the gene pool well mixed.
A genetic gradient, or cline, is what some researchers prefer to think exists in place of races. “There are no races, there are only clines,” asserted the biological anthropologist Frank Livingstone.5 Critics raised the same objection against the Rosenberg-Feldman result, alleging that the clustering of individuals into races was an artifact and that with a geographically more uniform sampling approach, the researchers would have seen only clines.6 The Rosenberg-Feldman team then reanalyzed their data and gave their survey finer resolution by looking at 993 sites, not just 377, on each of the genomes in their study. They found that the clusters are real. Although there are gradients of genetic diversity, there is also a clustering into the continental groups described in their first article.7
Rosenberg and Feldman compared people’s genomes on the basis of DNA repeats. Another kind of DNA marker has since become available for global population comparison—the SNP, which is more useful for medical studies. SNP stands for single nucleotide polymorphism, meaning a site on the genome where some people have a different kind of DNA unit from that of the majority. A vast preponderance of sites on the genome are fixed, meaning everyone has the same DNA unit, whether A, T, G or C. The fixed sites, being all the same, say nothing about human variation. It’s the SNP sites, which are variable, that are of particular interest to geneticists because they afford a direct way of comparing populations. To exclude the many random mutations that occur just in particular individuals and have no wider importance, SNPs are arbitrarily defined as sites on the genome where at least 1% of the population has a DNA unit other than the standard one.
A research group led by Jun Z. Li and Richard M. Myers has applied a clustering program like that used by Rosenberg and Feldman to almost 1,000 people in 51 populations across the globe. Each person’s genome was examined at 650,000 SNP sites. On the basis of SNPs, just as with the DNA repeats, people sampled from around the world clustered into 5 continental groups. But in addition, the SNP library brought to light two other major clusters. These had not emerged in the Rosenberg-Feldman study, which had used fewer markers. The more DNA markers that are used, whether tandem repeats or SNPs, the more subdivisions can be established in the human population.
One of the new clusters is formed by the people of Central and South Asia, including India and Pakistan. The second is the Middle East, where there is considerable admixture with people from Europe and Africa.8 It might be reasonable to elevate the Indian and Middle Eastern groups to the level of major races, making seven in all. But then many more subpopulations could be declared races, so to keep things simple, the five-race, continent-based scheme seems the most practical for most purposes.
Wi
thin each continental race, the SNP analysis could separate out further subgroups. Within Europe it distinguished French, Italians, Russians, Sardinians and Orcadians (people who live in the Orkney Islands, north of Scotland). In China the northern Han can be distinguished from the southern Han.
Groupings within Africa are of particular interest because this is where modern humans spent the first 150,000 years of their existence. In the most thorough survey of Africa so far, Sarah Tishkoff and colleagues surveyed people from 121 populations, scanning their genomes at 1,327 variable sites, most of them DNA repeats. The survey brought to light 14 different ancestral groups within Africa. Tishkoff found that, unlike in the rest of the world, where there are definable continental races, in Africa most populations are admixtures of several ancestral groups. There have presumably been a larger number of migration events within Africa, which served to mix up populations that were originally separate. The most recent large-scale migration was the Bantu expansion, a population explosion driven by new agricultural technology. Within the past few thousand years, Bantu speakers from the region of Nigeria and Cameroon in West Africa have migrated across to eastern Africa and down both coasts to southern Africa. Only a few groups have kept relatively clear of the churning of populations within Africa. These include the click-speaking peoples of Tanzania and southern Africa, who until recently have been hunter-gatherers, and the various pygmy groups, who live deep in the forest.9
The click-speakers and pygmies may be remnants of a much earlier hunter-gatherer population that once occupied a large part of southern Africa and the eastern coast as far north as Somalia. The click-speakers speak a group of languages known as Khoisan, which are unlike any others and have only very distant relationships among themselves, probably reflecting their great antiquity. The pygmy groups too may once have spoken Khoisan languages but it is impossible to know for sure, because they have lost their original languages.
A Troublesome Inheritance Page 10