The Age of Wonder

Home > Memoir > The Age of Wonder > Page 35
The Age of Wonder Page 35

by Richard Holmes


  After initial suspicions, Davy formed a close friendship with Watt, and took him on madcap field expeditions to explore the local slate and tin mines, plunging fearlessly into the nearby Wherry mine, which ran out deep under the sea. They gathered a huge range of mineral specimens, and went drinking in the evenings. Watt — fully six years older — teased Davy as ‘my dear Alchemist’, and announced that he would be Davy’s ‘mystagogue in his initiation into the orgies of the mirth-inspiring Bacchus’, by which one may understand that they drank a little French wine together in honour of Lavoisier — and possibly of Mlle Nancy.26 Years later, in his Geology Lectures, Davy would fondly recall these expeditions. Gregory passed on Davy’s name to his father, who in turn wrote about the young prodigy to his friend Dr Thomas Beddoes of Bristol.

  Thomas Beddoes was regarded indulgently as a sort of secular saint by the Watt family: a holy fool of science. A gifted physician and lecturer, he had been forced to resign from his Fellowship at Oxford for his staunchly (and tactlessly) held republican and atheist views. He was a friend of Erasmus Darwin, and was much liked by the whole group of Lunar Men based around Birmingham, but especially by the Watts. At Oxford one of his best students had been the wealthy young Cornishman Davies Giddy who was already lending Davy books from his extensive scientific library.

  Beddoes, who lived in Rodney Place, Clifton, had a wide knowledge of European science, and had probably the most up-to-date scientific library in the west of England. He praised Lavoisier for his ‘study of impalpable substances … bringing within the sphere of the senses … fire, electricity, and magnetism’.27 In 1798, although it was wartime, he planned to open a new kind of democratic clinic, the Bristol Pneumatic Medical Institute, at 6-7 Dowry Square, Hotwells, on a hillside above the river Avon. Beddoes was now thirty-eight years old, and he felt it was the moment to try out his big idea: a radical centre for free public medicine, and research into inhalable gases, drugs and diets.

  The Pneumatic Institute had been on his mind since 1794. Using the Bristol publisher Joseph Cottle, Beddoes had issued a number of idealistic pamphlets and questionnaires, to drum up financial and medical support. He wrote: ‘The Institution will be conducted with the utmost publicity so that all mankind may reap the benefit of it. The expense is estimated at 3 or 4 thousand pounds.’ Reassuringly for subscribers, his bankers would be Coutts & Co. of London.28

  Beddoes had already tried treating various diseases (notably consumption, palsy and strokes) with drug regimes, using opium and digitalis, and experimental diets. His new idea was based on the recently discovered chemistry of respiration. His concept was that inhaled gases, ‘factitious airs’, by entering the bloodstream via the lungs, could alter and improve the whole constitution, and thereby cure major diseases. On 31 October 1794 he wrote to Davies Giddy: ‘Incontestable proof has been given that the application of airs or gases to the cure of diseases is both practicable and promising. There is for instance the best reason to hope that Cancer, the most dreadful of human maladies may by some of these substances be disarmed of its terror and its danger too.’29

  He planned to house up to a dozen in-patients, and to treat up to 300 out-patients a week, most of them without charge.30 But financing philanthropy was always difficult. Eventually Beddoes thought that sufficient income could be generated by the sale of portable gas-inhaling equipment to local aristocrats, who he assumed were always more or less ill, and in need of gas treatment. But he needed initial capital: he asked Giddy for a gift of £350, got financing from James Watt, applied publicly to Joseph Banks at the Royal Society, and privately to the Duchess of Devonshire. Knowing perhaps that the duchess was not averse to a flutter, Beddoes put his proposal in terms of a wager, promising he could ‘cure gout for 500 guineas with a new specific’, but was happily prepared ‘to forfeit 5,000 guineas’ if he failed. Five thousand guineas was also the sum he had hoped for from the Royal Society.31 In the event it was another liberal aristocrat, William Henry Lambton, who supplied most of the funds, in return for having Beddoes tutor his sons.

  Beddoes’s republican sentiments were always closely tied up with his view of public medicine. The following spring, while informing Giddy that he was treating a young woman for stomach ulcers, he observed that ‘the quondam Patriot William Pitt was almost done for’, and ironically enclosed a brown silk hat-ribbon printed in gold letters with the patriotic slogan: ‘Licensed to Wear Hair Powder. Pitt for Ever!’32 ♣

  It was a philanthropic project, typical of an age that also produced in Bristol at exactly this time Coleridge and Southey’s Pantisocratic scheme to start a self-governing commune on the banks of the Susquehanna in America.33 Beddoes was now looking for a young, enthusiastic assistant to promote this quixotic scheme. But he also wanted to appear realistic. He wrote carefully to Davies Giddy in July 1798: ‘I can open for [Davy] a more fruitful field for investigation than anybody else. Is it not also the most direct road to fortune? … He must devote his time [here] for two or three years … It will be considered as part of his medical education … He does not undertake to discover cures for this or that disease; he may acquire just applause by bringing out clear, though negative results … I would gladly place [these] at the head of my first volume.’

  In effect Beddoes was offering Davy the chance of his first scientific publication, as well as a salaried research post.34

  Davy now began his own lively correspondence with Beddoes in Bristol, describing his ‘new theories’ of combustion and respiration. He announced that he had a whole series of other papers on gases, electricity, heat and — most intriguingly — the universal energy transmitted by starlight. Beddoes read these eagerly, and, encouraged by James Watt, invited Davy — not yet twenty — to join the Institute as an assistant.

  It is significant that Davy (and his mentor Tonkin) clearly saw this as a step forward to a career in medicine, not in chemistry or the physical sciences. Such a career — that of the professional research scientist — did not yet exist. (Neither of course did the term ‘scientist’ itself, as will emerge.) Davy would continue to think of a career in medicine, even of taking a medical degree at Oxford, until he was thirty. But what he was pioneering was the role of the public man of science in British society, and this was to be one of his greatest and most fruitful inventions.35

  On 1 October 1798, Davy was formally released from his indentures in Penzance, and appointed Superintendent of the Pneumatic Medical Institution in Bristol. It was a momentous move, both in terms of geography and career. His old supporter Tonkin approved, but his mother was acutely anxious and wept at his parting, while his little brother John was inconsolable. Davy set out on the long journey eastwards, round Dartmoor and through Exeter, riding on the top of the coach for economy. All along the route he passed through villages hung with flags and bunting. On enquiring, he was told that the whole nation was celebrating the news of Nelson’s victory over the French at the battle of the Nile. But it was almost as if they were cheering him – Humphry Davy from Penzance, a son of genius.

  At Bristol Hotwells he found Dr Beddoes to be ‘uncommonly short and fat’, a kindly but distracted host, and ‘extremely silent’ unless holding forth on some scientific topic or theory. Beddoes suffered from asthma, hated all physical exercise, but was passionately committed to his idea of public medicine, especially to benefit the poor. Rather surprisingly, he had married into the Edgeworth family, a clan of gifted Dublin doctors and intellectuals. His Irish father-in-law once described Beddoes as ‘a little fat Democrat of considerable abilities, a great name in the Scientific world as Naturalist and Chemist — good humoured, good natured, a man of honour & virtue [though] his manners are not polite’.36

  Davy was prepared for eccentricity in a scientific genius. The real surprise was Beddoes’s young wife, twenty-four-year-old Anna, the younger half-sister of the novelist Maria Edgeworth. She was the precise opposite of the doctor (a good proof of ‘polarities’, Davy later thought): thin, energetic, talkative — an
d dazzlingly pretty — and not at all a bluestocking. A miniature of 1787 shows her with long blonde hair cut in a fringe, wide provoking eyes, and a tender voluptuous mouth. Anna was vivacious and alarmingly direct, with a love of the countryside inherited from her Irish roots. Davy reported back innocently to his mother in Penzance that Mrs Beddoes was ‘the reverse of the Doctor, extremely cheerful, gay, witty; she is one of the most pleasing women I ever met with … we are already very great friends’.37 Soon they were going for long walks together along the banks of the Avon, and Davy was half in love with her. Several years later he would recall these walks in one of his best poems, ‘Glenarm by Moonlight’, describing the ‘hours of confidence’ they shared.

  That winter Beddoes published Davy’s earliest speculative essays on the chemistry of heat and starlight, which followed Lavoisier’s ideas on ‘oxygen’ but also challenged his concept of what Davy called briskly ‘the imaginary fluid caloric’. They appeared in Beddoes’s annual anthology, published by Joseph Cottle, Contributions to Physical and Medical Knowledge, principally in the West of England, which was intended to give publicity to the Institute and encourage donations. Cottle had also, as it happened, just brought out that autumn an anonymous little book of poems entitled Lyrical Ballads.

  Davy’s two main essays were far the most ambitious contribution to the anthology, and announced his intellectual arrival in Bristol. He set out to champion chemistry, and speculate about its future, on the grandest metaphysical scale. In a Penzance notebook he had exclaimed: ‘What we mean by Nature is a series of visible images: but these are constituted by light. Hence the worshipper of Nature is a worshipper of light.’38 In his Essay 1, ‘On Heat, Light and the Combinations of Light’, he developed this into an entire cosmological vision, in which the whole universe was powered by starlight as well as Newtonian gravity, and would eventually be understood as a single unified idea. ‘We may consider the sun and the fixed stars (the suns of other worlds) as immense reservoirs of light, destined by the great Organizer to diffuse over the Universe organization and animation. And thus will the law of Gravitation, as well as the Chemical laws, be considered as one great end — PERCEPTION. Reasoning thus it will not appear improbable that one law alone may govern and act upon matter, — an Energy of Mutation impressed by the will of the Deity — a law which may be called the law of Animation.’

  He added confidently that ‘the further we investigate the phenomenon of Nature, the more we discover simplicity and unity of design’.39

  Even more radical was his suggestion that all human consciousness depended directly on physiological processes and ‘corpuscular’ changes. ‘Perception, ideas, pleasures and pains, are the effect of these changes … The laws of mind then, probably, are not different from the laws of corpuscular motion.’40 As a result the chemistry of the human body would provide a key to human well-being in the broadest sense. ‘We cannot entertain a doubt that every change in our sensations and ideas must be accompanied by some corresponding change in the organic matter of the body. These changes experimental investigation may enable us to determine. By discovering them we should be informed of the laws of our existence … Thus would chemistry, in its connection with the laws of Life, become the most sublime and important of all sciences.’41

  Davy was making an almost metaphysical claim that chemistry might prove to be the path to ultimate knowledge. In an unpublished essay from this time, ‘An Essay to Prove that Thinking Powers Depend on the Organization of the Body’, he went much further towards a materialist position. He played with the idea that all mental powers were produced by ‘the peculiar action of fluids upon solids’, that is, that there was a defining neurochemistry of the human brain. The ‘soul’ itself might ultimately be, or depend upon, a material entity. He argued that it was scientifically incorrect to believe that ‘God is unable to make matter think’. All mental problems — including pain and unhappiness — might be cured by the chemistry of drugs and gases.42

  In Essay 2, ‘On the Generation of Phosoxygen’, Davy developed Lavoisier’s theory that all plants, when acted upon by sunlight, decomposed ‘carbonic acid gas’ (carbon dioxide) and released oxygen into the atmosphere. He also claimed to show experimentally that aquatic plants, when exposed to sunlight, oxygenated the surrounding water. Since all animal life did the reverse — absorbing oxygen in respiration and releasing carbonic gas — there was an essential equilibrium or harmony within nature. Davy had in effect described what is now known as the ‘carbon cycle’.43

  3

  Davy began his regular work at the Institute, seeing patients and administering gas and drugs according to Dr Beddoes’s instructions. These treatments were based on the ‘Brunonian system’, the theoretical work of Scottish physician John Brown (1735-88), hotly debated in the Edinburgh medical schools, which divided all medicines into stimulants and depressants. In fact this had very little basis in trials or experiment, as Davy gradually came to realise (and as Banks at the Royal Society had long suspected). Beddoes also introduced him to his Bristol publisher Joseph Cottle, and sent him to visit the Institute’s most influential supporters: the powerful Wedgwood family at Cote House, and James Watt and the Lunar Society in Birmingham. Davy made an excellent impression on everyone he met, and his circle of acquaintances rapidly expanded.

  Initially Davy boarded with the Beddoes family in their large house at 3 Rodney Place, Clifton. Later he moved down the hill to live directly above the Institute and its laboratories and garden, in a corner of Dowry Square, Hotwells. As its name implied, the Hotwells district had a long tradition of thermal baths and healing spa establishments. But the small, reclusive Georgian square, tucked away into the hillside below Clifton village and wood, seemed an odd location for an experimental medical practice, with its daily stream of poverty-stricken patients, and its pungent aroma of chemicals and gases.

  Hitherto the square had been an elegant cul de sac, with only its southern end opening onto the main Hotwells coaching road into Bristol city and docks. Until the arrival of Dr Beddoes’s Institute, it had evidently been a haven of tranquillity and respectability. The fine new brick and sandstone houses, with their tall sash windows and pillared porticoes, quietly enclosed a private garden on three sides. The Institute occupied two adjacent buildings, Nos 6 and 7, on an L-shaped site in what had previously been the north-west corner of the square, the quietest and furthest from the road. Beddoes chose the elegant No. 7 to house the main reception rooms and infirmary, while No. 6, more of a rabbit warren, contained the laboratories and staff quarters, and opened directly out onto a steep garden at the back. A separate outbuilding in that garden was used for the manufacture of gases and the storage of chemical compounds. No. 6 also had a wide tradesmen’s entrance, where medical supplies could be delivered in bulk by cart, and bodies (usually of small animals) could be removed.44 ♣

  As part of his policy of progressive public medicine, Beddoes advertised free pneumatic treatments for people suffering from consumption, asthma, palsy and scrofula. Untreatable or anti-social diseases, such as venereal infections, were also included. For more wealthy patients, the Institute offered inhaling kits that could be purchased and used in the home. This was one aspect of the Institute that Banks had objected to, as he felt it was open to quackery.45

  For the first few months Davy, though delighted by his quarters, found himself acting largely as a medical superintendent. There were a number of assistants under his command, including two ancient bottle-washers, Dwyer and Clayfield, and young Dr Kinglake, whom he quickly dominated. But gradually the working rooms were fitted out, and for the first time in his life Davy was in charge of a well-equipped chemical laboratory.

  By the spring of 1799 Beddoes agreed to Davy setting up a monitored series of gas-inhaling experiments, to see if any real scientific data could be gathered on the healing power of gases. In fact he intended to use the new empirical chemistry of Priestley and Lavoisier to test, and if necessary challenge, the Brunonian system o
f medicine by controlled experiment. He wrote to James Watt, an outstanding engineer, for designs of gas-inhaling equipment, including a silken face-mask with a wooden mouthpiece. The masks and gas bags were based on balloon technology.46

  In April 1799 Davy began his analysis of common air, and the workings of human respiration within the lung. He spread his initial experiments over various compounds of ‘factitious airs’, including hydrogen, carbon dioxide and carbon monoxide, and several combinations of nitrous gas. Before trying anything out on his patients, he tested everything on himself, often at grave risk. Fainting fits, nausea and stunning migraines frequently overcame him. But he was undaunted.

  One early unguarded experiment with carbon monoxide (a lethal gas, still much favoured by garage suicides) almost killed him.47 At two in the afternoon he began to inhale four quarts of ‘pure hydrocarbonate’ in the presence of his assistant Patrick Dwyer and a new laboratory recruit, James Tobin. On inhaling the third quart he collapsed. ‘I seemed sinking into annihilation, and had just power enough to drop the mouthpiece from my unclosed lips … I faintly articulated, “I do not think I shall die.”’ Davy still had the presence of mind to take his own pulse — ‘threadlike and beating with excessive quickness’ — then staggered out of the laboratory into the garden of No. 6 Dowry Square.

  Here he collapsed on the lawn, trembling and seized with agonising chest pains. He was semi-conscious for some minutes, and was given oxygen by the terrified Dwyer. After half an hour he thought he was recovered, but he became giddy again and was helped to a bed. He lay there for the rest of the day, suffering from ‘nausea, loss of memory, and deficient sensation’. He vomited, and was then overcome by ‘excruciating pain’ between the eyes. Finally by ten o’clock at night his symptoms began to ease, and he fell into an exhausted sleep.

 

‹ Prev