The Age of Wonder

Home > Memoir > The Age of Wonder > Page 43
The Age of Wonder Page 43

by Richard Holmes


  A squat, sandy-haired figure, Abernethy was a pious, plain-spoken Scot of ‘unconquerable shyness’ in society, but famed for his blunt bedside manner with patients, and his brusque diagnoses.5 Brought up a Calvinist, he had no time for niceties. He made no secret of his opinion that most of the diseases of his richer clients could be cured by cutting back on food and alcohol, and saying their prayers. When consulted by Coleridge in 1812 for a huge range of complex stomach complaints and subtle nervous afflictions (including chronic nightmares), he unhesitatingly diagnosed a simple case of opium addiction, and indirectly helped Coleridge find asylum with the physician James Gillman in Highgate four years later.6

  Among the medical students at Bart’s, Abernethy was one of the most popular lecturers of his time, partly because of his cussedness and eccentricity. So there was great interest when in 1814, as Professor of Anatomy at the Royal College of Surgeons, he began the series of annual public lectures known as the Hunterian Orations. He chose a subject for his discourse inspired by his old anatomy teacher: what he called An Enquiry into the Probability and Rationality of Mr Hunter’s Theory of Life’.

  The topic was unexpected. Hunter’s celebrity had been based on his practical — indeed terrifying — skills as a surgeon, and his vast knowledge of comparative anatomy. His characteristic last paper, published posthumously, was A Treatise on Blood, Inflammation and Gunshot Wounds’ (1794). Hunter had established a sophisticated collection of comparative anatomy specimens. After his death in 1793 they were purchased by the state, and in 1800 entrusted to the newly established Royal College of Surgeons in Lincoln’s Inn Fields. The Hunterian Museum exists there to this day. In a way the collection was an intellectual time-bomb, for, sequentially displayed, the specimens visibly demonstrated, to anybody who cared to examine them, how directly and evidently man’s skeletal structures (skull, hands, feet) and internal organs (heart, liver, lungs) had evolved from ‘lower’ animal forms. They were compelling proof of a certain kind of continuous physiological ‘evolution’, and they clearly suggested that man had developed directly from the animal kingdom, and was not a unique ‘creation’.

  But this was not the subject that Abernethy chose. His old master Hunter, like many scientific men towards the end of their lives, had developed certain undefined mystical yearnings. Abernethy had found among his bloodstained and chaotic manuscripts various ill-defined theories of a Life Force or Life Principle, which suddenly seemed of great contemporary interest. Hunter speculated that this Force was somehow associated with spontaneous motions inherent in the human physiology: systolic and diastolic pulses of the heart, the circulation of the blood, healing inflammation, male erection, and female blushing. Above all he believed that blood itself held the secret of Vitality: ‘it is the most simple body we know of, endowed with the principle of life’.7

  Building on Hunter’s speculations, Abernethy proposed a theory of human life based on a semi-mystical concept of a universal, physiological life force. Blood itself could not explain life, though it might carry it. This universal ‘Vitality’ was a ‘subtle, mobile, invisible substance, super-added to the evident structure of muscles, or other form of vegetable and animal matter, as magnetism is to iron, and as electricity is to various substances with which it may be connected’. Abernethy further suggested that this theory brought scientific evidence — if not exactly proof — to the theological notion of the soul. If the Life Force was ‘super-added’, some power outside man must obviously have added it.8

  In drawing his analogies between Vitality and electricity, Abernethy also called on the authority of Humphry Davy’s Bakerian Lectures at the Royal Society. Like many scientific men of the day he was entranced by the potentialities of the voltaic battery, and its possible connections with ‘animal magnetism’ and human animation. Electricity in a sense became a metaphor for life itself. ‘The experiments of Sir Humphry Davy seem to me to form an important link in the connexion of our knowledge of dead and living matter. He has solved the great and long hidden mystery of chemical attraction, by showing that it depends upon the electric properties which the atoms of different species of matter possess … Sir Humphry Davy’s experiments also lead us to believe, that it is electricity, extricated and accumulated in ways not clearly understood, which causes those sudden and powerful motions in masses of inert matter, which we occasionally witness with wonder and dismay.’9

  The lectures excited great interest in the medical profession, but not yet among the general public. This would soon change. In 1816, to his surprise and irritation, Abernethy found his fashionable speculations on the mysteries of the Life Force, and the role of electricity in animating ‘inert matter’, scathingly attacked and denounced. The critic was none other than his fellow Professor of Anatomy, his youngest and most gifted pupil, the thirty-three-year-old William Lawrence.

  It was a wholly unexpected blow, though later Abernethy said that Lawrence had been known ‘to decry and scoff’ at his views behind his back on the wards at Bart’s.10 He felt bitterly about it, as Lawrence had been Abernethy’s assistant since the age of sixteen, and Demonstrator at Bart’s from 1803 until 1812, largely under his protection and patronage. He had even lodged with Abernethy for three years, and was considered his protégé.

  Clearly, Lawrence felt that none of these claims weighed against scientific truth, and had grown impatient with his old chief. Temperamentally Lawrence was the opposite of his patron. Tall, thin, ambitious, elegant and highly articulate, he regarded medicine as a pure science, with no outside allegiances. European in his outlook, flamboyant and radical in his thinking, he was well read in French and German medical literatures. He knew the writings of the Jena University circle, and had developed strong leanings towards Cuvier and Bichat and the materialist view of human life. If not an avowed atheist, he had little time for conventional pieties.

  Unusually for an English medical student, William Lawrence had actually studied anthropology under Banks’s old friend Blumenbach at Göttingen in Germany, where he had been noted for his brilliance and theoretical daring.11 Blumenbach had developed a whole new science of craniology: the collecting, measuring and classing of animal and human skulls. His huge skull collection at Göttingen University was popularly known as ‘Dr B’s Golgotha’, and he frequently wrote to Banks requesting specimens. Craniology was also pursued by Alexander von Humboldt in South America, and the classification of racial types, a particular Germanic concern, had begun.12 At twenty-four, while still acting as Abernethy’s humble Assistant and Demonstrator at Bart’s, Lawrence had translated Blumenbach’s seminal work, Comparative Anatomy, in 1807.

  This book was a battle cry of a theoretical kind. It raised new and intensely controversial questions about human racial types, and the hypothetical link between skull shape, brain size and intelligence. Blumenbach introduced the first classic racial divisions between Caucasian, African, Asiatic and Indian types. But, perhaps most significant of all, he tried to define the physical structure of the human brain, and how it produced ‘a mind’. He came within a pace of dismissing the existence of a human ‘soul’, and suggesting the purely material basis for life itself. But having an extremely restricted and expert medical readership, the book caused little immediate stir in England, and it is doubtful if Abernethy himself ever read it.

  While Abernethy was consulted by Coleridge in 1812, Lawrence found a much younger but equally demanding literary figure in his consulting rooms in July 1815. This was the twenty-two-year-old Percy Bysshe Shelley, suffering from a cocktail of nervous diseases including abdominal spasms, nephritic pains, suspected tuberculosis and a writing-block Lawrence — literate, radically minded and well travelled — quickly gained the poet’s confidence. ‘My health has been considerably improved under Lawrence’s care,’ Shelley wrote with some surprise in August, ‘and I am so much more free from the continual irritation under which I lived, as to devote myself with more effect and consistency to study.’13 A month later, in September 1815, Shelley
was drafting his long poem about travel and self-searching, Alastor, or The Spirit of Solitude, and a series of speculative essays about the nature of life, and also of death, as in his ‘Essay on a Future State’.14

  These medical consultations would continue regularly over the next three years, until Shelley and his young wife Mary departed for Italy in 1818. They took place during the height of the Vitalism debate, and not unnaturally they developed a literary as well as a medical aspect. It was Lawrence who recommended the warm, smiling Italian climate as ‘a certain remedy’ for all Shelley’s diseases. It was also Lawrence, with his unusual knowledge of French and German experimental medicine, who helped turn the Shelleys’ joint scientific speculations along a more controversial path.15

  The natural tendency of most English doctors and surgeons was to avoid too much theory and speculation. This evidently did not apply to Lawrence, or to his intellectual masters on the Continent. The great French naturalist Georges Cuvier approached all animal life as part of a continuous ‘successive’ development. The celebrated Parisian doctor Professor Xavier Bichat developed a fully materialist theory of the human body and mind in his lectures Physiological Researches on Life and Death, translated into English in 1816. Bichat defined life bleakly as ‘the sum of the functions by which death is resisted’.

  Even more radical were the ‘Machine-Man’ theories of the French physiologist Julien de la Mettrie. He argued that the theologian, with his ‘obscure studies’, could say nothing intelligible about the soul, and that only physicians and surgeons were in a position to study the evidence. ‘They alone, calmly contemplating our soul, have caught it a thousand times unawares, in its misery and its grandeur, without either despising it in one state or admiring it in the other.’16

  William Lawrence was only waiting the opportunity to bring such radical ideas to bear. As part of his new professorship he was required to give the series of public lectures at the Royal College, starting in spring 1816. These immediately followed on the series given by Abernethy It was the custom that one Hunterian Lecturer would preface his remarks with an appropriate salute to the endeavours of the previous incumbent. But on entering the lecture hall, after a few elegant throwaway compliments, Lawrence began roundly to attack Abernethy’s theories. He stated bluntly that there was absolutely no such thing as a mysterious Life Principle, and that the human body is merely a complex physical organisation. In a phrase that became notorious, he claimed that the development of this physiological organisation could be observed unbroken, ‘from an oyster to a man’.17

  Lawrence’s references to Abernethy became steadily more aggressive and sardonic. ‘To make the matter more intelligible, this vital principle is compared to magnetism, to electricity, and to galvanism; or it is roundly stated to be oxygen. ’Tis like a camel, or like a whale, or like what you please…’ This last was a contemptuous, and deliberately literary, allusion to Shakespeare’s Hamlet mocking the foolish old Polonius. Other smart literary quotations came from the poems of Alexander Pope and John Milton.18

  Lawrence eventually went on to broaden his attack. Science, he argued, had an autonomous right to express its views fearlessly and objectively, without interference from Church or state. It must avoid ‘clouds of fears and hopes, desires and aversions’. It must ‘discern objects clearly’ and shun ‘intellectual mist’. It must dispel myth and dissipate ‘absurd fables’.19 The world of scientific research was wholly independent. ‘The theological doctrine of the soul, and its separate existence, has nothing to do with this physiological question … An immaterial and spiritual being could not have been discovered amid the blood and filth of the dissecting room.’20

  Finally he attacked the very nature of the religious, mystifying or unscientific philosophy which Abernethy appeared to be promulgating: ‘It seems to me that this hypothesis or fiction of a subtle invisible matter, animating the visible textures of animal bodies, and directing their motions, is only an example of that propensity in the human mind, which had led men at all times to account for those phenomena, of which the causes are not obvious, by the mysterious aid of higher and imaginary beings.’21 ♣

  As the controversy became more public, Lawrence was accused of personal betrayal, ingratitude and atheism. Between 1817 and 1819 he and Abernethy continued to exchange increasingly vitriolic views in their Royal College lectures, and student groups of supporters formed round each. Abernethy was the senior figure, but Lawrence would not back down, and published his lectures in a book that became notorious, his Natural History of Man (1819).

  It became clear that this was no ordinary academic wrangle, but that the subject in contention was the fundamental nature of human life. The larger implications were clearly social, political and even theological. There was also a strong overtone of imperial controversy: foreign versus British science. Thus Vitalism was the first great scientific issue that widely seized the public imagination in Britain, a premonition of the debate over Darwin’s theory of evolution by natural selection, exactly forty years later.

  2

  In fact Vitalist ideas had been stirring for over a generation. Ever since the 1790s the new developments in Romantic medical science and theory had begun to raise fundamental questions about the nature of life itself. What distinguishes organic from inorganic (‘dead’) matter, or vegetable life from animal life? Was there some form of animating power throughout nature, and if so, was it identical to — or analogous with — electricity? These led on, inevitably, to an enquiry about the nature of mind, spirit and the traditional concept of ‘the soul’: how could this be explained or defined in scientific terms, or should it simply be dismissed?

  Such questions, traditionally the province of theologians and philosophers, were now increasingly considered by physicians, science writers, and those who studied what Coleridge called ‘the science of mind’.22 They had already been the subject of ingenious scientific experiments in Europe, which gave rise to increasingly fierce debates surrounding the work of Luigi Galvani in Italy and Franz Anton Mesmer in France. By 1792 Galvani’s supposedly ‘magnetic’ frog experiments were proved to be erroneous by Alessandro Volta: the mysterious ‘vital electrical fluid’ came not from the animal itself, but from the chemical action of the metal plates to which it was attached during experiments.

  Similarly, the French Académie des Sciences had appointed a scientific commission in 1784, headed by Franklin and Lavoisier (both experts in electrical phenomena), to examine the claims of ‘animal magnetism’. They set up a series of elegant ‘blind’ trials, in which mesmerists were asked to identify objects that had been previously filled with ‘vital fluid’, including trees and flasks of water. They signally failed to do so. The commissioners then went on to examine the supposed curing of ‘mesmerised’ patients. As with the Montgolfier trials, Franklin wrote in detail to Banks of their findings. With impressive precision, the commission concluded that some ‘mesmerised’ patients did actually show marked signs of improved health. But this was not because of any ‘magnetic’ influences or ‘vitalising’ electrical fluids. It was simply because the patients believed they would be cured.♣

  But speculation continued to flourish in Germany, where a group of young writers, gathered at the University of Jena, began to explore the philosophical ideas of Friedrich Schelling and what he called Naturphilosophie. This doctrine, perhaps best translated as ‘science mysticism’, defined the entire natural world as a system of invisible powers and energies, operating like electricity as a series of ‘polarities’. According to Schelling’s doctrine, the whole world was indeed replete with spiritual energy or soul, and all physical objects ‘aspired’ to become something higher. There was a ‘world-soul’ constantly ‘evolving’ higher life forms and ‘levels of consciousness’ in all matter, animate or inanimate. All nature had a tendency to move towards a higher state.

  So carbon for example ‘aspired’ to become diamond; plants aspired to become sentient animals; animals aspired to become men; men aspi
red to become part of the Zeitgeist or world spirit. Evolutionary, idealist, electrical and Vitalist ideas were all evidently tangled up in this system, which had an obvious appeal to imaginative writers in the Jena circle like Novalis, Schiller and Goethe, as well as experimental physiologists like Johann Ritter.23 It had its attractions, not least in its optimism and its sense of reverence for the natural world. But it also constantly teetered on the brink of idiocy. One of its wilder proselytisers, the Scandinavian geologist Henrick Steffens, was said to have stated that ‘The diamond is a piece of carbon that has come to its senses’; to which a Scottish geologist, probably John Playfair, made the legendary reply: ‘Then a quartz, therefore, must be a diamond run mad.’24

  These ideas gradually crossed the Channel to Britain, though not of course escaping the sceptical, all-weather eye of Banks. In January 1793 the radical journalist John Thelwall gave a hugely controversial public lecture on ‘Animal Vitality’ organised by the Physical Society at Guy’s Hospital, under the auspices of the surgeon Henry Cline. The topic was so popular among the medical students that discussions were renewed over five subsequent and increasingly rowdy meetings.25 ‘Citizen’ Thelwall had become known for his wish to ‘demystify’ various forms of authority and received opinions, and the following year, in May 1794, he was to be prosecuted for political sedition, a charge which carried the death penalty. It was partly the support of Cline, and the young Astley Cooper, which saved him from the gallows.26

  Attacking what he saw as the potential mystifications in Hunter’s theories, Thelwall proposed an openly materialist thesis that no ‘spark of life’ was divinely conferred, and that no soul was implanted by some external source. Yet he did not believe, like Hunter, that a ‘life principle’ could be simply explained by blood passing through the lungs. On the other hand he also maintained that ‘Spirit, however refined must still be material.’ But what then was its source, if not blood — and not God?

 

‹ Prev