When the question is framed in this way, the answer appears inescapable, but no less startling for all that. In order to speak Guugu Yimithirr, you need to know where the cardinal directions are at each and every moment of your waking life. You need to know exactly where the north, south, west, and east are, since otherwise you would not be able to impart the most basic information. It follows, therefore, that in order to be able to speak such a language, you need to have a compass in your mind, one that operates all the time, day and night, without lunch breaks or weekends.
And as it so happens, the Guugu Yimithirr have exactly this kind of an infallible compass. They maintain their orientation with respect to the fixed cardinal directions at all times. Regardless of visibility conditions, regardless of whether they are in thick forest or on an open plain, whether outside or indoors, whether stationary or moving, they have a spot-on sense of direction. Stephen Levinson relates how he took Guugu Yimithirr speakers on various trips to unfamiliar places, both walking and driving, and then tested their orientation. In their region, it is rarely possible to travel in a straight line, since the route often has to go around bogs, mangrove swamps, rivers, mountains, sand dunes, forests, and, if on foot, snake-infested grassland. But even so, and even when they were taken to dense forests with no visibility, even inside caves, they always, without any hesitation, could point accurately to the cardinal directions. They don’t do any conscious computations: they don’t look at the sun and pause for a moment of calculation before saying “the ant is north of your foot.” They seem to have perfect pitch for directions. They simply feel where north, south, west, and east are, just as people with perfect pitch hear what each note is without having to calculate intervals.
Similar stories are told about Tzeltal speakers. Levinson relates how one speaker was blindfolded and spun around over twenty times in a darkened house. Still blindfolded and dizzy, he pointed without problem at the direction of “true downhill.” A woman was taken into the market town for medical treatment. She had rarely if ever been in that town before, and certainly never in the house where she was staying. In the room, the woman spotted an unfamiliar contraption, a sink, and asked her husband: “Is the hot water in the uphill tap?”
The Guugu Yimithirr take this sense of direction entirely for granted and consider it a matter of course. They cannot explain how they know the cardinal directions, just as you cannot explain how you know where in front of you is and where left and right are. One thing that can be ascertained, however, is that the most obvious candidate, namely the position of the sun, is not the only factor they rely on. Several people reported that when they traveled by plane to very distant places such as Melbourne, more than a three-hour flight away, they experienced the strange sensation that the sun did not rise in the east. One person even insisted that he had been to a place where the sun really did not rise in the east. This means that the Guugu Yimithirr’s orientation does fail them when they are displaced to an entirely different geographic region. But more importantly, it shows that in their own environment they rely on cues other than the position of the sun, and that these cues can even take precedence. When Levinson asked some informants if they could think of clues that would help him improve his sense of direction, they volunteered such hints as the differences in brightness of the sides of trunks of particular trees, the orientation of termite mounds, wind directions in particular seasons, the flights of bats and migrating birds, the alignment of sand dunes in the coastal area.
But we are only just beginning, because the sense of orientation that is required to speak a Guugu Yimithirr–style language has to extend further than the immediate present. What about relating past experiences, for instance? Suppose I ask you to describe a picture you saw in a museum a long time ago. You would probably describe what you see in your mind’s eye, say the milkmaid pouring the milk into a bowl on a table, the light coming from the window on the left and illuminating the wall behind her, and so on. Or suppose you are trying to remember a dramatic event from many years ago, when you capsized a sailing boat off the Great Barrier Reef. You jumped out to the right just before the boat rolled over to the left, and as you were swimming away you saw a shark in front of you, but . . . if you lived to tell the tale, you would probably describe it more or less as I just did now, by relaying everything from the vantage point of your orientation at the time: jumping “to the right” of the boat, the shark “in front of you.” What you will probably not remember is whether the shark was exactly to the north of you swimming south or to the west swimming east. After all, when there is a shark right in front of you, one of the last things you worry about is the cardinal directions. Similarly, even if at the time you visited the museum you could have worked out the orientation of the room in which the picture was hanging, it is extremely unlikely that you will remember now if the window in the picture was to the north or the east of the girl. What you will see in your mind’s eye is the picture as it appeared when you stood in front of it, that’s all.
But if you speak a Guugu Yimithirr–style language, that sort of memory will simply not do. You cannot say “the window to the left of the girl” so you’ll have to remember if the window was north of her or east or south or west. In the same way, you cannot say “the shark in front of me.” If you want to describe the scene, you’d have to specify, even twenty years later, in which cardinal direction the shark was. So your memories of anything that you might ever want to report will have to be stored in your brain with cardinal directions as part of the picture.
Does this sound far-fetched? John Haviland filmed a Guugu Yimithirr speaker, Jack Bambi, telling his old friends the story of how in his youth he capsized in shark-infested waters but managed to swim safely ashore. Jack and another person were on a trip with a mission boat, delivering clothing and provisions to an outstation on the McIvor River. They were caught in a storm, and their boat capsized in a whirlpool. They both jumped into the water and managed to swim nearly three miles to the shore, only to discover, on returning to the mission, that Mr. Schwarz was far more concerned at the loss of the boat than relieved at their miraculous escape. Except for its content, the remarkable thing about the story is that it was remembered throughout in cardinal directions: Jack Bambi jumped into the water on the western side of the boat, his companion to the east of the boat, they saw a giant shark swimming north, and so on.
Perhaps the cardinal directions were just made up for the occasion? Well, quite by chance, Stephen Levinson filmed the same person two years later, telling the same story. The cardinal directions matched exactly in the two tellings. Even more remarkable were the hand gestures that accompanied Jack’s story. In the first film, shot in 1980, Jack is facing west. When he tells how the boat flipped over, he rolls his hands forward away from his body. In 1982, he is sitting facing north. Now, when he gets to the climactic point when the boat flips over, he makes a rolling movement from his right to his left. Only this way of representing the hand movements is all wrong. Jack was not rolling his hands from right to left at all. On both occasions, he was simply rolling his hands from east to west! He maintained the correct geographic direction of the boat’s movement, without even giving it a moment’s thought. And as it happens, at the time of year when the accident happened there are strong southeasterly winds in the area, so flipping from east to west seems very likely.
Levinson also relates how a group of Hopevale men once had to drive to Cairns, the nearest city, some 150 miles to the south, to discuss land-rights issues with other aboriginal groups. The meeting was in a room without windows, in a building reached either by a back alley or through a car park, so that the relation between the building and the city layout was somewhat obscured. About a month later, back in Hopevale, he asked a few of the participants about the orientation of the meeting room and the positions of the speakers at the meeting. He got accurate responses, and complete agreement, about the orientation in cardinal directions of the main speaker, the blackboard, and other objects in
the room.
TURNING THE TABLES
What we have established so far is that speakers of Guugu Yimithirr have to be able to recall anything they have ever seen with the crisscross of the cardinal directions as part of the picture. It is almost a tautology to say, therefore, that they must commit to memory a whole extra layer of spatial information that we are blithely unaware of. After all, people who say “the fish in the northeast corner of the shop” obviously have to remember that the fish was in the northeast corner of the shop. Since most of us do not remember whether fish are in northeast corners of shops (even if we could work it out at the time), this means that Guugu Yimithirr speakers register and remember information about space that we do not.
A more controversial question is whether this difference means that Guugu Yimithirr and English ever lead their speakers to remember different versions of the same reality. For example, could the crisscross of cardinal directions that Guugu Yimithirr imposes on the world make its speakers visualize and recall an arrangement of objects in space differently from us?
Before we can see how researchers tried to test such questions, let’s first play a little memory game. I’m going to show you some pictures with a few toy objects arranged on a table. There are three objects in all, but you will see at most two at a time. What you have to do is try to remember their positions, in order to complete the picture later on. We start with picture 1, where you can see a house and a girl. Once you have memorized their positions, turn to the next page.
Now, in picture 2, you can see the house from the previous picture, and a new object, a tree. Try to remember the position of these two as well, and then turn to the next page.
Finally, in picture 3, you see just the girl on the table. Now imagine I gave you the toy tree and asked you to place this tree in a way that would complete the picture and would be consistent with the two layouts you saw before. Where would you put it? Make a small mark (mental or otherwise) on the table before you turn to the next page.
This is not a terribly difficult game, and it doesn’t take prophetic powers to predict where you placed the tree. Your arrangement must have been more or less what is shown in picture 4, as you would have followed the obvious clues: earlier, the girl was standing immediately to the left of the house, whereas the tree was much farther to the left. So this must mean that the tree was farther to the left than the girl. If there is any difficulty here, it is only to understand what the point is in doing such obvious exercises.
The point is that for speakers of Guugu Yimithirr or Tzeltal, the solution you have suggested does not seem obvious at all. In fact, when they were given tasks of this nature, they completed the picture in a very different way. They did not put the tree anywhere to the left of the girl, but rather on her other side, to the right, as in picture 5.
But why should they get such a simple task so badly wrong? There was nothing wrong about their solution, thank you very much. But there was something wrong about the way I just described it, because contrary to what I said, they did not put the tree “to the right of the girl.” They put it to the south of her. In fact, their solution makes perfect sense if one is thinking in geographic and not egocentric coordinates. To see why, let’s assume that you are reading this book facing north. (You can always turn to face the north, if you know where it is, just to avoid confusion.) If you look back at picture 1, you’ll see that the house was to the south of the girl. In picture 2, the tree was to the south of the house. Clearly, then, the tree must be south of the girl, since it is farther south from the house, which is farther south from the girl. So when completing the picture, it’s perfectly sensible to put the tree to the south of the girl, as in picture 5.
The reason the two solutions diverge is that in this game the table in picture 2 was rotated 180 degrees from the other pictures. We, who think in egocentric coordinates, automatically factor out this rotation and ignore it, so it has no bearing on the way we remember the arrangement of the objects on the table. But those who think in geographic coordinates do not ignore the rotation, and so their memory of the same arrangement is different.
In the actual experiments conducted by Levinson and his colleagues from the Max Planck Institute in Nijmegen, the two tables were not on adjacent pages of a book but in adjacent rooms (as in the picture on the facing page). The participants were shown an arrangement on a table in one room, then moved to a facing room and shown the second arrangement on a second table, and then finally brought back to the first room to solve the puzzle and complete the picture on the first table. The rotation pattern was just as in the preceding pictures, only in real life and on real tables. Many varieties of such experiments have been conducted with speakers of different languages. And the results of these experiments show that the preferred coordinate system in the language correlates strongly with the solutions the participants tend to pick. Speakers of egocentric languages like English overwhelmingly chose the egocentric solution, whereas speakers of geographic languages like Guugu Yimithirr and Tzeltal chose the geographic solution.
On one level, the results of these experiments speak for themselves, but there has been some controversy in the last few years about how to interpret their significance. Whereas Levinson has claimed that the results demonstrate deep cognitive differences between speakers of languages with egocentric and geographic coordinates, some of his claims have been contested by other researchers. As usual in academic controversies, much of the debate boils down to bickering over ill-defined terms: is the effect of language strong enough to “restructure cognition” (whatever that might mean exactly)? But on the factual level, the main argument leveled against the experiments was that the choice of solution can easily be biased by the physical environment in which they are conducted.
For example, participants might be encouraged to choose an egocentric solution if the two rooms are arranged so that they look the same from the egocentric perspective—say with the table on the right in both rooms and a cupboard to the left of the table in both rooms. On the other hand, a geographic solution might be encouraged if the environment is arranged to favor the geographic perspective—for instance, if the experiment is conducted in the open air, in view of a prominent geographic landmark. But while the point is well taken in general, in this particular experiment it serves only to strengthen the “strangeness” of the solution chosen by speakers of Guugu Yimithirr–style languages, because the two rooms in Levinson’s experiment were arranged to look exactly the same from the egocentric perspective. The table was on the right in both rooms (which meant it was in the north in one room and in the south in another), and all other furniture was arranged accordingly. And yet speakers of Guugu Yimithirr and Tzeltal overwhelmingly chose the geographic solution even under such “adverse” conditions.
Does all this mean that we and speakers of Guugu Yimithirr sometimes remember “the same reality” differently? The answer must be yes, at least to the extent that two realities that for us can look identical will appear different to them. We, who generally ignore rotations, will perceive two arrangements that differ only by rotation as the same reality, but they, who cannot ignore rotations, will perceive them as two different realities. One way of visualizing this is to imagine the following situation. Suppose you are traveling with a Guugu Yimithirr friend and are staying in a large chain-style hotel, with corridor upon corridor of identical-looking doors. Your room is number 1264, and your friend is staying in the room just opposite yours, 1263. When you go to your friend’s room, you see an exact copy of yours: the same little corridor with a bathroom on the left as you enter, the same mirrored wardrobe on the right, then the main room with the same bed on the left, the same indistinct-brown curtains drawn behind it, the same elongated desk next to the wall on the right, the same television set on the left corner of the desk and the same telephone and minibar on the right. In short, you have seen the same room twice. But when your Guugu Yimithirr friend comes into your room, he will see a room that is quite different
from his, one where everything is reversed. Since the rooms face each other (rather like rooms 1 and 2 in the picture shown here), and since they have been arranged to look the same from the egocentric perspective, they are actually north-side-south. In his room the bed was in the north, in yours it is in the south; the telephone that in his room was in the west is now in the east. So while you will see and remember the same room twice, the Guugu Yimithirr speaker will see and remember two different rooms.
CORRELATION OR CAUSATION?
One of the most tempting and most common of all logical fallacies is to jump from correlation to causation: to assume that just because two facts correlate, one of them was the cause of the other. To reduce this kind of logic ad absurdum, I could advance the brilliant new theory that language can affect your hair color. In particular, I claim that speaking Swedish makes your hair go blond and speaking Italian makes your hair go dark. My proof? People who speak Swedish tend to have blond hair. People who speak Italian tend to have dark hair. QED. Against this epitome of tight logical reasoning you may come up with a few petty objections along these lines: Yes, your facts about the correlation between language and hair color are perfectly correct. But couldn’t it be something other than language that caused the Swedes to have blond hair and the Italians dark? What about genes, for instance, or climate?
Now, as far as language and spatial thinking go, the only thing we have actually established is correlation between two facts: the first is that different languages rely on different coordinate systems; the second is that speakers of these languages perceive and remember space in different ways. Of course, my implication all along was that there is more than just correlation here and that the mother tongue is an important factor in causing the patterns of spatial memory and orientation. But how can we be sure that the correlation here is not as spurious as that between language and hair color? After all, it is not as if language itself can directly create a sense of orientation in anyone. We may not know exactly what clues the Guugu Yimithirr rely on for telling where north is, but we can be absolutely certain that their remarkable surety about directions could have been achieved only through observation of cues from the physical environment.
Through the Language Glass: Why the World Looks Different in Other Languages Page 20