by Nick Lane
glucose, oxidation process 72, 73, 76–7
Goldschmidt, Richard 29–30
Gould, Stephen Jay 22–3, 57, 111, 152–3, 280
Gram-negative bacteria 122–3 n.
Green, Douglas 219
Gutteridge, John 275
Hackstein, Johannes 52 n.
haemoglobin pigment 73–5
Hagelberg, Erika 249
Haldane, J. B. S 154–5, 171, 192, 271, 285, 297
Hall, Alan 102
Halliwell, Barry 275
Hamilton, William 192, 221, 234
Harden, Sir Arthur 79
Harman, Denham 274–5, 278
Harold, Franklin 92, 103, 195–6
heart disease, vulnerability to 255–6
heat production, by uncoupling respiration 92, 183–4, 254–6, 305–6
Helmholtz, Hermann von 73
Hemmingsen, A. M. 167
hermaphrodite lifestyle 232–3, 238
Heusner, Alfred 159, 167
Heyerdahl, Thor 246
histones 10, 32, 48–9
Hochachka, Peter 176
Horovitz, Bob 204
Hulbert, Tony 181
human evolution:
mitochondrial DNA studies 244–7
‘Out of Africa’ hypothesis 242–3, 246
population genetic studies 243–4
human genome project 68
nuclear mitochondrial sequences (numts) 132–3, 252 n.
human mitochondrial genome 16, 135–9, 141–4, 281
Huntington’s disease 285, 298
Hurst, Laurence 234
Hussein, Saddam, identification of 4
Hutchison, Clyde, III 235–6
Huxley, Sir Julian 175
hydrogen hypothesis (for the eukaryote progenitor) 36–7, 51–64, 54, 58–9, 131, 133–4, 216, 223
hydrogen sulphide, stratification of oceans 62–3
hydrogenosomes 52–3, 54, 55–6, 144
hyperthermophiles 100
immune function, and apoptosis 204
infertility 260
male cytoplasmic sterility 238
male infertility (asthenozoospermia) 256
ooplasmic transfer 4, 240, 264
intelligence, evolution of 23, 24
iron, as a catalyst 73–4
iron-sulphur minerals, and the first cells 99–102, 101, 103–4
isoprenes 99, 135
isoprenoids 135
Jacob, François 114
Jacobs, Howard 299–300
Jaffe, Bernard 71
Jagendorf, André 89–90
Jansen, Robert 263
Jones, Laura 38
Joule, James Prescott 73
Kalckar, Herman 80
Karr, Timothy 239
Keilin, David 74–7, 85, 209
Kennedy, Eugene 13, 72
Kerr, John 203
Khrapko, Konstantin 250
Kingsbury, B. F. 13, 72
Kirkwood, Tom 278
Kleiber, Max 159–60, 163, 167
Kleiber’s law 159–60, 160, 163, 166–8
Knoll, Andrew 62
Konstantinidis, Konstantinos 115
Krebs, Sir Hans 76 n.
Krebs Cycle 76
Kroemer, Guido 208
Lake Mungo fossil 251–3
Larsson, Nils-Göran 299–300
Lavoisier, Antoine Laurent 71–2, 78
Lehninger, Albert 13, 72
life on earth, origin of 21, 22, 29, 103–4
lifespan:
and antioxidants 274–7
disposable soma theory 278
extension of 297–8
and fecundity 278
and metabolic rate 269–70, 271, 272–3
see also ageing
Linnane, Anthony 285–6
Lipmann, Fritz 80
Lohman, Karl 79
Lovelock, James 197
LUCA (Last Universal Common Ancestor) 97–9
Macauley, Vincent 249
MacMunn, Charles 74
macro-mutations 30
male cytoplasmic sterility 238
male infertility (asthenozoospermia) 256
Mandelbrot, Benoit 161
Margulis, Lynn 5, 14–16, 30, 36, 51, 124, 196–8, 213–14
Martin, Bill 36–7, 52–61, 97, 98–9, 100, 133–5
Marx, Karl 203
Maynard Smith, John 111, 120, 192, 248–9
Mayr, Ernst 197
Medawar, Peter 285, 297
membranes:
active transport systems 85–7, 87, 92
evolution of 98–102, 101, 103–4, 133–5
inorganic 99–102, 101, 103–4
lipid 98–9
uses for the proton-motive force 91–2
Mendel’s laws (Mendelian inheritance) 281, 284
Merezhkovskii, Konstantine 111, 112
metabolic rate:
and ageing 158, 269–70, 272
birds 269, 270, 271
and body mass 156–61, 160, 168–70, 173–6
ecological effects 158
evolutionary effects 158
and heat loss 159
and lifespan 269–70, 271, 272–3
limitations of supply networks 161–6, 168–70, 181
n. link between resting and maximum rates 168–70, 180, 182, 184
marsupials 184
rats and humans compared 156–7
‘universal constant’ 159–60, 160, 163, 166–8, 184
methanogens 28–9, 40, 48–50, 51–64, 54
Meyerhof, Otto 79
Michaelidis, Theologos 213, 217, 218
Michiels, Nico 233
microsporidia (parasitic eukaryotes) 43, 47
Miller, Stanley 95
minerals, as catalysts for early life 95, 99–102
Miquel, Jaime 278–9
Mitchell, Peter 7, 68, 84–90, 92, 123, 197 n.
mitochondria:
and aerobic capacity increase 181–2
‘anaerobic’ forms 53–5, 55–6
apoptosis enforcement 5, 191, 202, 207–12, 303
bacterial ancestry 5, 13–17, 33–4, 52–3, 55–6
chemiosmosis 7, 68, 86
division and fusion 12, 220, 294
electrical charge across the inner membrane 89
in eukaryotic cells 25–6
in the evolution of eukaryotes 5–6, 17–18, 25–6
in the evolution of size and complexity 147
forensic use of 3, 250–1
free-radical leakage and ageing 272–3, 274–5, 277
free-radical signal feedback system 142–4, 221–6, 290–1
functions of 1, 3, 13
heat and energy production 254–6
loss of independence 218–19
in mammalian organs 182
manipulation of host cell 219–21
maternal line inheritance 3, 234–41, 244, 245, 247, 261–2
names for 13
need for two sexes 6, 232–41, 261–2
numbers in different types of cells 1, 3, 4, 11–12
pH gradient across the inner membrane 89
possible parasitic ancestry 216–18
proof of existence of 12–13
relationship to hydrogenosomes 52–3
relationship to α-proteobacteria 48
retrograde response 293
sexual fusion initiation 221–6
size and structure 1, 3, 11, 12
spare capacity and ageing 306–11
in the story of life 7–8
symbionts 13–17, 124–6
uniparental inheritance 3, 234–41, 244, 245, 247, 261–2
see also respiration; respiratory chain
mitochondrial DNA:
extinction of sequences 251–3
human population typing 254–6
mutation rate 245–6, 247, 251, 285–8
recombination 245, 247–50
studies 244–7
Mitochondrial Eve 3, 242, 246, 251
mitochondrial
genes 15–16
co-adaptation with nuclear genes 259–62
effects of natural selection 253–6, 262–5
gene transfer to the nucleus 16, 47, 131–2
genomic conflict 237–41
human mitochondrial genome sequence 281
rate of evolution 16
retention of specific genes 130–1, 135–9, 141–4, 144
mitochondrial heteroplasmy 240, 249–51, 258–9, 261–2, 282
mitochondrial mutations:
and ageing 284–8, 296–301
diseases caused by 254, 280–4
effects on mitochondrial function 292–6
and free-radical damage 278–80
and longevity 304–5
mutation rate 245–6, 247, 251, 285–8
mitochondrial theory of ageing 4, 272–301
molecular biology, and the origin of life 21
molecular bonds, potential energy 73
molecular genetics, and mitochondria 6–7
Monod, Jacques 107–8
Moyle, Jennifer 89
Müller, Miklós, hydrogen hypothesis 52–61
multicellular colonies 25
method of reproduction 226
the need for apoptosis 224–6
redox gradients 224–5
sequestration of a germ-line 226
multicellular individuals:
evolution of 24–6
imposition of cell death 215
see also apoptosis; eukaryote evolution
muscle contraction, need for ATP 79–80
muscles:
increased aerobic capacity 180–2
strength-to-weight ratio 170–1
Mycoplasma, loss of the cell wall 123–5
natural selection 108, 109
on mitochondrial genes 253–6, 262–5
selfish gene concept 192–8
species level 191–2
Neanderthal man 3, 242–3, 247, 252
Neisseria gonorrhoeae (cause of gonorrhoea) 213, 216–18
Nicholas II, Tzar, identification of 3, 250–1
Nicolle, Charles 116
Nitrosomonas 128, 128, 145
nucleus 9
mitochondrial genes in 16, 47, 131–2
origin of 133–4
numts (nuclear mitochondrial sequences) 132–3, 252 n.
ocean, stratification due to hydrogen sulphide 62–3
Ochoa, Severo 80
oocytes, cull during development 263–5
ooplasmic transfer 4, 240, 264
organ transplantation, and mitochondrial function 312–14
Orgel, Leslie 69, 91
Orrenius, Sten 210
oxidation 72
oxygen levels in tissues 172–3, 276 n.
Pallister-Hall syndrome 132
Paracelsus 71
parasitic infection, possible origin of eukaryotes 44–6
parasitism 126, 127
Parkinson’s disease 298
Pasteur, Louis 78, 96
Patino, Maria 229
periplasm 122–3, 124, 128, 128
Pflüger, Eduard 72
phagocytosis 34–5, 38, 127
photosynthesis 80, 90, 91, 97
pico-eukaryotes 17, 30
Pitnick, Scott 239
Polynesian people, origins 246–7
porins 210–11, 216–18
Portier, Paul 14
predation 126–7, 130
primordial soup theory 95–8
prokaryotes, see Archaea; bacteria
proteins 10–11, 94
α-proteobacteria 48, 49, 52 n., 56–61, 58–9
proticity (proton electricity) 87
proton leak, heat generation 92, 183–4, 254–6, 305–6
proton-motive force 68, 86–93, 87, 91–3
proton pumps 7, 91–3, 102, 103–4
Prowazek, Stanislaus von 116
quarter-power scaling (Kleiber’s law) 159–60, 160, 163, 166–8, 184
Racker, Efraim 81–2, 84, 87, 89
rats:
ageing and degenerative diseases 270, 271, 272, 277–8
lack of spare mitochondrial capacity 308, 309–10
metabolic rate 156–7
similarities to humans 156
redox gradients, in multicellular colonies 224–5
redox poise in respiration 139–41
redox reactions 72
in the deep oceans 99–100
reduction 72
Rees, Martin 22
respiration:
chemiosmotic hypothesis of respiration 86–91
co-adaptation of mitochondrial and nuclear genes 259–62
dual-control hypothesis 259–62
evolution of 96–7, 98, 102
generation of ATP 80
and the origin of life 96–7
proton-motive force 68, 86–93, 87, 91–3
redox poise 139–41
role of the membrane 84, 86–7, 87, 88, 89
search for the site of 71–2
speed of 139–41
view of Lavoisier 71–2
respiratory chain 75–7, 77
free-radical formation 140–2, 221–2, 274, 277, 290–1, 305–6
pumping protons across a membrane 86–93, 87
uncoupling 84, 88, 89, 92, 183, 254–5, 305–6
respiratory pigments 73–5
retrograde response in mitochondria 293
Rhodobacter 56, 63
ribosomes 11
ribozymes 95
Ricketts, Howard 116
Rickettsia prowazekii (cause of typhus) 44–5, 49, 56, 116–17, 213
Ridley, Mark 113 n., 153, 186–7
Rivera, Maria 48
RNA 11, 94–5
Roger, Andrew 46–7
Ross, Ian 265 n.
Rothman, Dan 167
Ruben, John 180–1
Rubner, Max 158, 159, 160 n., 167
Russell, Mike 98–9, 100–2, 101, 103
Sagan, Carl 14
Sagan, Dorion 197
Sanger, Fred 16, 281
Sapp, Jan 14
Schopenhauer, Arthur 232
Schwartz, Marianne 249–50
sex:
advantages of 232
benefits for the species 191–2
and complexity 153
evolution of 192, 219–21
sex determinators 229–31