The Second Kind of Impossible
Page 1
Thank you for downloading this Simon & Schuster ebook.
* * *
Get a FREE ebook when you join our mailing list. Plus, get updates on new releases, deals, recommended reads, and more from Simon & Schuster. Click below to sign up and see terms and conditions.
CLICK HERE TO SIGN UP
Already a subscriber? Provide your email again so we can register this ebook and send you more of what you like to read. You will continue to receive exclusive offers in your inbox.
* * *
CONTENTS
PREFACE
PART I: MAKING THE IMPOSSIBLE POSSIBLE
1. IMPOSSIBLE!
2. THE PENROSE PUZZLE
3. FINDING THE LOOPHOLE
4. A TALE OF TWO LABORATORIES
5. SOMETHING EXCITING TO SHOW YOU
6. PERFECTLY IMPOSSIBLE
PART II: THE QUEST BEGINS
7. DID NATURE BEAT US?
8. LUCA
9. QUASI-HAPPY NEW YEAR
10. WHEN YOU SAY IMPOSSIBLE
11. BLUE TEAM vs. RED TEAM
12. A CAPRICIOUS IF NOT OVERTLY MALICIOUS GOD
13. THE SECRET SECRET DIARY
14. VALERY KRYACHKO
15. SOMETHING RARE SURROUNDING SOMETHING IMPOSSIBLE
16. ICOSAHEDRITE
PART III: KAMCHATKA OR BUST
17. LOST
18. FOUND
19. NINETY-NINE PERCENT
20. BEATING THE ODDS
21. L’UOMO DEI MIRACOLI
22. NATURE’S SECRET
Photographs
Acknowledgments
About the Author
Index
Image Credits
To the curious and fearless
who defy convention
risking ridicule and failure
to pursue their dreams of discovery
* * *
PREFACE
MIDDLE OF NOWHERE, KAMCHATKA PENINSULA, JULY 22, 2011: I held my breath as the blue behemoth lurched its way down the steep incline. It was my first day in the mad contraption, a weird-looking vehicle with what looked like a Russian army tank on bottom and a beat-up moving van on top.
To my amazement, our driver, Viktor, managed to make it all the way down the hill without toppling over. He hit the brakes, and our truck shuddered and shook to a halt at the edge of a riverbed. He turned off the ignition, and muttered a few words in Russian.
“Viktor says this is a good place to stop,” our translator announced.
I peered out the front window, but could not for the life of me see what was so good about it.
Climbing out of the cab, I stood atop the enormous tank treads to get a better view. It was a cool summer evening, approaching midnight. But it was still light out, a reminder of how far I was from home. The summer sky never gets very dark so close to the Arctic Circle. The earthy, pungent smell of decaying vegetation filled the air, the unmistakable smell of the Kamchatka tundra.
I jumped off the tank treads into the thick, spongy muck to stretch my legs when, suddenly, I was attacked from all sides. Millions and millions of ravenous mosquitoes were springing up from the muck, drawn to the carbon dioxide I was exhaling. I swiped frantically with my arms and turned this way and that to escape them. Nothing helped. I had been warned about the tundra and its perils. Bears, insect swarms, unpredictable storms, endless miles of muddy swells and ruts. But these weren’t just stories anymore. This had become all too real.
My critics were right, I realized. I had no business leading this expedition. I was neither a geologist nor an outdoorsman. I was a theoretical physicist who belonged back home in Princeton. I should be working on calculations, with notebook in hand, not trying to lead a team of Russian, Italian, and American scientists on what was probably a hopeless quest in search of a rare mineral that had traveled billions of years through space.
How could this have happened? I asked, as I struggled against the ever-growing swarm. Unfortunately, I knew the answer: The crazy expedition had been my idea, the fulfillment of a scientific fantasy that had been occupying my mind for nearly three decades. The seed was planted in the early 1980s when my student and I developed a theory showing how to create novel forms of matter long thought to be “impossible,” atomic formations explicitly forbidden by venerable scientific principles.
I had learned early on to pay close attention whenever an idea is dismissed as “impossible.” Most of the time, scientists are referring to something that is truly out of the question, like violating the conservation of energy or creating a perpetual motion machine. It never makes sense to pursue those kinds of ideas. But sometimes, an idea is judged to be “impossible” based on assumptions that could be violated under certain circumstances that have never been considered before. I call that the second kind of impossible.
If one can expose the underlying assumptions and find a long-overlooked loophole, the second kind of impossible is a potential gold mine that can offer a scientist the rare opportunity, perhaps a once-in-a-lifetime opportunity, to make a transformational discovery.
In the early 1980s, my student and I discovered a scientific loophole in one of the most well-established laws of science and, exploiting that, realized it was possible to create new forms of matter. In a remarkable coincidence, just as our theory was being developed, an example of the material was accidentally discovered in a nearby laboratory. And soon, a new field of science was born.
But there was one question that kept bothering me: Why hadn’t this discovery been made long ago? Surely nature had made these forms of matter thousands, or millions, or perhaps even billions of years before we had dreamed them up. I could not stop myself from wondering where the natural versions of our material were being hidden and what secrets they might hold.
I did not realize at the time that this question would lead me down the road to Kamchatka, an almost thirty-year-long detective story with a dizzying array of improbable twists and turns along the way. So many seemingly insurmountable barriers had to be conquered that it sometimes felt like an unseen force was guiding me and my team step by step toward this exotic land. Our entire investigation had been so . . . impossible.
Now we were in the middle of nowhere, with everything we had achieved up to this point at risk. Success would depend on whether we were lucky enough and skillful enough to conquer all of the unexpected obstacles, some of them terrifying, that we were about to confront.
PART I
* * *
MAKING THE IMPOSSIBLE POSSIBLE
ONE
* * *
IMPOSSIBLE!
PASADENA, CALIFORNIA, 1985: Impossible!
The word resonated throughout the large lecture hall. I had just finished describing a revolutionary concept for a new type of matter that my graduate student, Dov Levine, and I had invented.
The Caltech lecture room was packed with scientists from every discipline across campus. The discussion had gone remarkably well. But just as the last of the crowd was filing out, there arose a familiar, booming voice and that word: “Impossible!”
I could have recognized that distinctive, gravelly voice with the unmistakable New York accent with my eyes closed. Standing before me was my scientific idol, the legendary physicist Richard Feynman, with his shock of graying, shoulder-length hair, wearing his characteristic white shirt, along with a disarming, devilish smile.
Feynman had won a Nobel Prize for his groundbreaking work developing the first quantum theory of electromagnetism. Within the scientific community, he was already considered one of the greatest theoretical physicists of the twentieth century. He would eventually achieve iconic status with the general public, as well, because of his pivotal role id
entifying the cause of the Challenger space shuttle disaster and his two bestselling books “Surely You’re Joking, Mr. Feynman!” and “What Do You Care What Other People Think?”
He had a wonderfully playful sense of humor, and was notorious for his elaborate practical jokes. But when it came to science, Feynman was always uncompromisingly honest and brutally critical, which made him an especially terrifying presence during scientific seminars. One could anticipate that he would interrupt and publicly challenge a speaker the moment he heard something that was, in his mind, imprecise or inaccurate.
So I had been keenly aware of Feynman’s presence when he entered the lecture hall just before my presentation began and took his usual seat in the front row. I kept a careful watch on him out of the corner of my eye throughout the presentation, awaiting any potential outburst. But Feynman never interrupted and never raised an objection.
The fact that he came forward to confront me after the talk was something that probably would have petrified many scientists. But this was not our first encounter. I had been lucky enough to work closely with Feynman when I was an undergraduate at Caltech about a decade earlier and had nothing but admiration and affection for him. Feynman changed my life through his writings, lectures, and personal mentoring.
When I first arrived on campus as a freshman in 1970, my intention was to major in biology or mathematics. I had never been particularly interested in physics in high school. But I knew that every Caltech undergraduate was required to take two years of the subject.
I quickly discovered that freshman physics was wickedly hard, thanks in large part to the textbook, The Feynman Lectures on Physics, Volume 1. The book was less of a traditional textbook than a collection of brilliant essays based on a famous series of freshman physics lectures that Feynman delivered in the 1960s.
Unlike any other physics textbook that I have ever encountered, The Feynman Lectures on Physics never bothers to explain how to solve any problems, which made trying to complete the daunting homework assignments challenging and time-consuming. What the essays did provide, however, was something much more valuable—deep insights into Feynman’s original way of thinking about science. Generations have benefited from the Feynman Lectures. For me, the experience was an absolute revelation.
After a few weeks, I felt like my skull had been pried open and my brain rewired. I began to think like a physicist, and loved it. Like many other scientists of my generation, I was proud to adopt Feynman as my hero. I scuttled my original academic plans about biology and mathematics and decided to pursue physics with a vengeance.
I can remember a few times during my freshman year when I screwed up enough courage to say hello to Feynman before a seminar. Anything more would have been unimaginable at the time. But in my junior year, my roommate and I somehow summoned the nerve to knock on his office door to ask if he might consider teaching an unofficial course in which he would meet once a week with undergraduates like us to answer questions about anything we might ask. The whole thing would be informal, we told him. No homework, no tests, no grades, and no course credit. We knew he was an iconoclast with no patience for bureaucracy, and were hoping the lack of structure would appeal to him.
A decade or so earlier, Feynman had given a similar class, but solely for freshmen and only for one quarter per year. Now we were asking him to do the same thing for a full year and to make it available for all undergraduates, especially third- and fourth-year students like ourselves who were likely to ask more advanced questions. We suggested the new course be called “Physics X,” the same as his earlier one, to make it clear to everyone that it was completely off the books.
Feynman thought a moment and, much to our surprise, replied “Yes!” So every week for the next two years, my roommate and I joined dozens of other lucky students for a riveting and unforgettable afternoon with Dick Feynman.
Physics X always began with him entering the lecture hall and asking if anyone had any questions. Occasionally, someone wanted to ask about a topic on which Feynman was expert. Naturally, his answers to those questions were masterful. In other cases, though, it was clear that Feynman had never thought about the question before. I always found those moments especially fascinating because I had the chance to watch how he engaged and struggled with a topic for the first time.
I vividly recall asking him something I considered intriguing, even though I was afraid he might think it trivial. “What color is a shadow?” I wanted to know.
After walking back and forth in front of the lecture room for a minute, Feynman grabbed on to the question with gusto. He launched into a discussion of the subtle gradations and variations in a shadow, then the nature of light, then the perception of color, then shadows on the moon, then earthshine on the moon, then the formation of the moon, and so on, and so on, and so on. I was spellbound.
During my senior year, Dick agreed to be my mentor on a series of research projects. Now I was able to witness his method of attacking problems even more closely. I also experienced his sharp, critical tongue whenever his high expectations were not met. He called out my mistakes using words like “crazy,” “nuts,” “ridiculous,” and “stupid.”
The harsh words stung at first, and caused me to question whether I belonged in theoretical physics. But I couldn’t help noticing that Dick did not seem to take the critical comments as seriously as I did. In the next breath, he would always be encouraging me to try a different approach and inviting me to return when I made progress.
One of the most important things Feynman ever taught me was that some of the most exciting scientific surprises can be discovered in everyday phenomena. All you need do is take the time to observe things carefully and ask yourself good questions. He also influenced my belief that there is no reason to succumb to external pressures that try to force you to specialize in a single area of science, as many scientists do. Feynman showed me by example that it is acceptable to explore a diversity of fields if that is where your curiosity leads.
One of our exchanges during my final term at Caltech was particularly memorable. I was explaining a mathematical scheme that I had developed to predict the behavior of a Super Ball, the rubbery, super-elastic ball that was especially popular at the time.
It was a challenging problem because a Super Ball changes direction with every bounce. I wanted to add another layer of complexity by trying to predict how the Super Ball would bounce along a sequence of surfaces set at different angles. For example, I calculated the trajectory as it bounced from the floor to the underside of a table to a slanted plane and then off the wall. The seemingly random movements were entirely predictable, according to the laws of physics.
I showed Feynman one of my calculations. It predicted that I could throw the Super Ball and that, after a complicated set of bounces, it would return right back to my hand. I handed him the paper and he took a glance at my equations.
“That’s impossible!” he said.
Impossible? I was taken aback by the word. It was something new from him. Not the “crazy” or “stupid” that I had come to occasionally expect.
“Why do you think it’s impossible?” I asked nervously.
Feynman pointed out his concern. According to my formula, if someone were to release the Super Ball from a height with a certain spin, the ball would bounce and careen off nearly sideways at a low angle to the floor.
“And that’s clearly impossible, Paul,” he said.
I glanced down to my equations and saw that, indeed, my prediction did imply that the ball would bounce and take off at a low angle. But I wasn’t so sure that was impossible, even if it seemed counterintuitive.
I was now experienced enough to push back. “Okay, then,” I said. “I have never tried this experiment before, but let’s give it a shot right here in your office.”
I pulled a Super Ball out of my pocket and Feynman watched me drop it with the prescribed spin. Sure enough, the ball took off in precisely the direction that my equations predicted, scooti
ng sideways at a low angle off the floor, exactly the way Feynman had thought was impossible.
In a flash, he deduced his mistake. He had not accounted for the extreme stickiness of the Super Ball surface, which affected how the spin influenced the ball’s trajectory.
“How stupid!” Feynman said out loud, using the same exact tone of voice he sometimes used to criticize me.
After two years of working together, I finally knew for sure what I had long suspected: “Stupid” was just an expression Feynman applied to everyone, including himself, as a way to focus attention on an error so it was never made again.
I also learned that “impossible,” when used by Feynman, did not necessarily mean “unachievable” or “ridiculous.” Sometimes it meant, “Wow! Here is something amazing that contradicts what we would normally expect to be true. This is worth understanding!”
So eleven years later, when Feynman approached me after my lecture with a playful smile and jokingly pronounced my theory “Impossible!” I was pretty sure I knew what he meant. The subject of my talk, a radically new form of matter known as “quasicrystals,” conflicted with principles he thought were true. It was therefore interesting and worth understanding.
Feynman walked up to the table where I had set up an experiment to demonstrate the idea. He pointed to it and demanded, “Show me again!”
I flipped the switch to start the demonstration and Feynman stood motionless. With his own eyes, he was witnessing a clear violation of one of the most well-known principles in science. It was something so basic that he had described it in the Feynman Lectures. In fact, the principles had been taught to every young scientist for nearly two hundred years . . . ever since a clumsy French priest made a fortuitous discovery.