The Great Animal Orchestra

Home > Other > The Great Animal Orchestra > Page 2
The Great Animal Orchestra Page 2

by Krause, Bernie


  This is the tuning of the great animal orchestra, a revelation of the acoustic harmony of the wild, the planet’s deeply connected expression of natural sounds and rhythm. It is the baseline for what we hear in today’s remaining wild places, and it is likely that the origins of every piece of music we enjoy and word we speak come, at some point, from this collective voice. At one time there was no other acoustic inspiration.

  CHAPTER ONE

  Sound as

  My Mentor

  Recording late one night deep in the Amazon jungle, my colleague Ruth Happel and I were alone in the forest several kilometers from camp with no light apart from the beams of our flashlights. Hoping to record the night ambience at several locations, we walked the trail quite aware of the tapestry of sounds around us. Along the way, we also picked up the unmistakable marking scent of a nearby jaguar. We never saw or heard the animal, but we knew it was close, perhaps even just a few feet away; it was frequently scent-marking as it followed us.

  The musky feline odor was a constant presence. Our senses were heightened, but neither of us was afraid or perceived any immediate danger. Sitting quietly about fifty meters apart, we recorded the acoustic texture of the nighttime rain forest—the delicate admixture of raindrops on leaves, and insects, birds, frogs, and mammals performing their unified chorus as they have each day and night since the beginning.

  After about an hour, we packed our gear and hiked deeper into the forest, listening for recording sites with more varied combinations. Then, around midnight, we decided to split up in order to gather the even greater variety of night sounds we hoped to encounter in this wonderfully rich environment. Ruth went down the path in one direction, and I went off in another.

  After trekking for about fifteen minutes, I sat down beside the trail and began to record the intense tropical choruses of frogs, insects, and reptiles. Only then did I hear the cat’s low growl in my headphones. It must have singled me out and followed me. Because I had the headphones’ volume turned up to catch the fragile acoustic composition and detail of the forest, I wasn’t attuned to my unlikely visitor—or aware that it had come that close. The sudden register of the jaguar’s growls in my headset indicated that the cat was not more than an arm’s length from the mics I had set up about thirty feet down the trail.

  Fully alert in an instant, a rush of adrenaline catching me off guard, I felt my chest convulse. Trying to think of an exit strategy—there was none—I made some effort to calm down. In the moment, I thought that the sound of my heart was so audible, it would startle the animal. But I kept absolutely still, holding my breath in the darkness.

  The incident lasted no more than a minute, but it seemed like a couple of hours as I sat mesmerized by the power of the animal’s voice, its breathing, and the sounds of rumbles in its stomach. Then, as suddenly as it appeared, the jaguar moved silently off into the forest, leaving behind rhythmic waves of frog and whirring insect choruses, and what remained of my pounding heart.

  • • •

  It was by a happy accident that I was drawn to natural sound. My first career was as a studio guitarist, playing sessions of all kinds in Boston and New York. Then, in the mid-1960s, when musicians began experimenting with synthesizers, I moved to California to audit electronic music sessions at Mills College, where I met Paul Beaver, a Los Angeles studio musician and concert pipe organist who had made a career out of creating weird sound effects for feature films such as Creature from the Black Lagoon and War of the Worlds.

  The wondrous-sounding tools of Paul’s special trade were early synthesizer-like instruments such as the Ondes Martenot, the Hammond Novachord, and the Theremin, which produced an eerie, wavering soprano-like voice, and his own inventions, including an archetypal two-octave keyboard synthesizer that generated high-pitched sci-fi effects—he called it the “Canary.” We immediately found creative synergy and formed the duo Beaver and Krause, and together introduced the synthesizer to pop music and film in California and the United Kingdom, produced five albums of our own, and performed music and effects for many features—including Rosemary’s Baby, Apocalypse Now, Invasion of the Body Snatchers, and Performance— and on TV shows such as Mission: Impossible, The Twilight Zone, and Bewitched. We were so busy working one session after the other—sometimes as many as eighty hours a week—that the only recording date I clearly remember is one with the Doors on Strange Days. Early in the session the music was tight and energetic. As time passed over the course of a very long evening, the tracks became more fragmented and seemed to fall apart. When I finally realized that the deterioration wasn’t the result of fatigue, I vowed never to touch another drug. The year: 1967.

  Paul and I were commissioned to do a series of albums for Warner Brothers in 1968. The first, titled In a Wild Sanctuary, would be the earliest musical piece to use long segments of wild sound as components of orchestration, and also the first to feature ecology as its theme. But being first meant that we had to collect the sounds ourselves. Wary of shedding his blue serge double-breasted suit and wing tips—his daily costume even in the most stifling L.A. weather—Paul refused to head into the field, leaving the task to me.

  The writer Thomas Hardy spoke of chance encounters that alter the course of our lives. A chance meeting with another person. A missed or unread letter. The vivid colors in a sunset. A musical performance. This first venture was bursting with the possibility of such a Hardyesque chance, and I set off, with a compact portable recorder and a pair of mics, to record in and around San Francisco, my home at the time.

  In October there was not much birdsong in the area—most birds had fledged, had migrated, or were silent. Nevertheless, the instant I switched on my recorder in resplendent Muir Woods one lovely fall day in 1968, my acoustic sensibilities were transformed by the ambient space that enveloped me. The summer fog was at long last gone, and shafts of dappled fall sunlight perforated the canopy of the old-growth coastal redwoods. Except for a few small aircraft and an occasional distant automobile, the muted ambience heard throughout the woods—a constant reassuring whisper—came from a soft breeze in the upper reaches of the forest. Though I was at first quite afraid of being alone—even in a managed forest like Muir Woods—stillness overcame and calmed me.

  Like a pair of binoculars, my mics and earphones brought the sound within a close and intimate range, exposing a range of vivid detail that was entirely new to me. A few birds flew overhead through the stereo space—right to left—the slow cadenced edge-tones of their undulating wings a diaphanous mix of whirr and shush. With my portable recording system, I didn’t feel like I was listening as a distant observer; rather, I had been sucked into a new space—becoming an integral part of the experience itself. It was one of those moments you run toward and fully embrace with an open spirit, afraid it might not last and knowing you’ve experienced something you will always crave.

  Sitting alone on the ground with my recorder, trying to appear small and unobtrusive, I was startled by each new sound. Many of the subtle acoustic textures around me were made larger than life through my stereo headphones, on which I cranked the monitor levels so that I wouldn’t miss anything. The impact was immediate and forceful. Impressions of lightness and space were alluring and lustrous. The ambience was transformed into minute detail that I would have never caught with my ears alone—the sounds of my breathing; the slight movement of a foot adjusted into a more comfortable position; a sniffle; a bird landing nearby on the ground, stirring up leaves and then pushing air with its wing beats in short, quick puffs as it took off, alarmed.

  I realized, even then, that wild sound might contain huge stores of valuable information just waiting to be unraveled. But to that point in my life, I’d had no way of understanding that the natural world was filled with so much wondrous chatter. How was anyone to know? Many of us don’t distinguish between the acts of listening and hearing. It’s one thing to hear passively, but quite another to be able to listen, fully and actively engaged.

  My
ears indifferently heard sound, but they weren’t trained to distinguish the many subtleties of untamed natural environments. I had always used my ears as filters—for shutting noise out—rather than as portals allowing large amounts of information in. A fine microphone system lets me differentiate between what to listen to and what to listen for. Through headphones, I hear pieces of the aural fabric in such gloriously clear detail that I am still surprised by how much I was previously missing. A pair of stereo microphones transforms the acoustic space—when I turn up the volume slightly above what I can hear unaided, I get an “out of this world” impression that I imagine astronomers might feel when they receive Hubble telescope images of exploding supernovas from the far reaches of the universe.

  Dorothea Lange, the Depression-era American photojournalist, used to say that a camera is a tool for learning to see without a camera. Well, a recorder is a tool for learning to listen without a recorder. The instant I first heard a spring dawn chorus, finally limning the visual setting with a proper sound track amplified through headphones, I immediately realized that with my unfocused ears I had been missing an exquisite part of real-world experience. Amplified sound gave me a way to decipher the language of the wild in ways my musically trained, “cultured” listening couldn’t otherwise grasp. Sitting there recording, I often felt a sudden urge to join the performance. And a feeling of incompleteness nagged at me as I left the forest that day. It was a combination of important secrets left unspoken or unheard and a sense of having lucked into a path of discovery that was nothing short of a divine revelation.

  While working on our fifth title, an updated version of an earlier hit for Nonesuch Records, Paul collapsed onstage during a concert in Los Angeles in January 1975. He died a day later from a brain aneurysm. Heartbroken by the loss of my good friend and music partner, I completed the album (Citadels of Mystery) with a group of musicians that featured Andy Narell and other studio friends. And at that point I began to rethink my career choices. In my mind, the last truly productive period in the record industry had passed. Ever more tired of the vagaries and egos of Hollywood—I had been fired and rehired more than half a dozen times during the making of Apocalypse Now alone—I decided to make a change. At forty years old, I quit the music world that I had always known and enrolled in a graduate studies program, earning a doctorate in creative arts with an internship in marine bioacoustics.

  You might think I left the world of music behind for that of natural sound. Instead, that is where I truly found it.

  Without water, life as we know it wouldn’t exist. Giving off the most ancient of sounds, it is extremely hard to capture acoustically and replicate. Its burbling, hissing, lapping, roaring, crashing, multi-rhythmic periodicity has served as a setting for human themes since the first music was sung and the first words spoken.

  It took the full course of musical history for a composer to produce an orchestral composition that approximated a sense of the sea—Debussy got close in La Mer, which was first performed in 1905. However, his piece still required that programmatic visual quality and verbal association in order to be reasonably successful. Here’s an interesting exercise: play excerpts from the piece for a few people who’ve never heard the work and don’t know the title, and ask them what they think it is trying to convey. The one time in the late ’90s that I tried this test—playing the six-minute second movement (“Jeux de vagues”) for a class of seventh graders—the answers ranged from “traveling in space,” “music for a film about the country,” “a scene about a family of dinosaurs,” and “a Western movie” to “just plain boring.” Not one student guessed that the music represented an impression of the sea or even water.

  At first glance, the task of recording water looks simple: set up a microphone by the shore and hit the “record” button. But no matter how hard I tried, my early attempts at capturing the sound of water never seemed quite right. We’re so sight-oriented that most of us who have reasonable vision tend to hear what we are looking at. When we’re focusing our eyes on breakers far offshore, our ears and brains usually filter out all but the boom and crash of waves that suggest distance and incredible force. When we’re staring at the leading edge of the waves as they wash up the rake of the beach, we hear the tiny bubbles crackling and snapping as they rupture in the sand at our feet, while the sounds of the distant breakers fade into the background.

  Microphones, however, don’t have eyes or brains. They indiscriminately pick up everything within the scope of their design. So, I discovered, if I want to portray the sound of an ocean shore, I need to record a variety of samples from different distances: a couple of hundred feet from the water’s edge, mid-distance from the high dune grasses to the water’s edge, and right at the waterline. By using sound-editing software to combine all the samples at various levels when I get back home, I am able to capture audio that sounds very much like the magic of waves at the ocean. But in its most granular form, what exactly is it that I’m recording? What is sound?

  Sound is a medium that’s hard to describe beyond its physical properties—frequency, amplitude, timbre, and duration. Yet it plays a key role in the ways societies express themselves; it is fundamental to the collective voice of the natural world, to music, and to acoustic noises of all kinds.

  The basic elements of sound are just outside our linguistic grasp, and to most of us sound has always been an enigma. Once, when asked to describe it, the composer, naturalist, and philosopher R. Murray Schafer responded: “How should I know? I have never seen a sound.” Schafer put his finger on the problem: how many times have you heard the expression “I see what you’re saying”? Our language is so sight-oriented that when Paul and I were asked to score films, directors often described the music they wanted in visual terms: dark, light, bright, really brown and murky in color.

  Although we receive sound physically, the recognition that sound cannot be seen, touched, or smelled led the Academy Award–winning sound designer Walter Murch to speak of it as the “shadow sense”—one that exists all by itself in an ethereal, amorphous realm. In their craft as film sound designers, Murch and his colleagues tie the shadow of sound—whether as dialogue, effects, or music—to the much more concrete visual reality of the picture, adding context and thereby transforming both elements.

  Only very recently have we attempted to deconstruct the mysteries of sound. Because sound is not easy to conceptualize, discoveries did not materialize quickly. Pythagoras, in about 500 BCE, first described the harmonic structure of the vibrating string, thus laying the groundwork for the principle of acoustics. Centuries later, Aristotle proved that air was essential as a conductor of sound. Scientists, including Greek and Roman amphitheater designers, and then Galileo and Newton, have been uncovering different aspects of sound for the past two millennia. But it wasn’t until Hermann Helmholtz’s book On the Sensations of Tone was first published in the mid-nineteenth century that sound was summarized in a consequential way. Helmholtz dissected every known aspect of his subject—from music to physics—and compiled the history into one volume. In frail health as a child of the 1820s, and coming from a relatively poor family that could not afford a highly prized science and math education for their son, Helmholtz was encouraged by his parents to study medicine in order to gain access to the institutions that would provide the education he desired. After earning his medical degree, he worked for a short time as a surgeon for the Prussian Army, and in addition to acoustics, his young career was marked by significant writings and discoveries across a wide range of fields, including physics, chemistry, optics, electricity, meteorology, and theoretical mechanics. One of his most important findings was in the field of physiology, where he identified the precise measurement of nerve impulses through the electrical stimulation of frog legs. The legs, although not attached to the body, moved when a small current was applied. Helmholtz was able to compute the exact time that elapsed between stimulus and movement, thereby calculating the exact rate of the nerve responses. But as an in
fluential teacher—one of his pupils was Heinrich Hertz, after whom the unit measurement of sound frequency is named—he spent a large part of his academic life outside medicine, addressing the mysteries of music.

  What strikes me in particular are his writings on acoustics—especially his descriptions of the famous “Helmholtz resonator” that, like a prism that partitions the light spectrum, could separate and identify individual frequencies of sound from within a complex acoustic structure. Also astonishing—though almost an afterthought, given the resonator’s significance—is his appendix of orchestral reference tunings collected from various towns and villages across Europe at the time of publication of his book. Even though the tuning fork—an early-eighteenth-century two-pronged metal instrument that when struck produces a steady pure tone—was widely used as a reference, Helmholtz discovered that the middle, or “concert,” A ranged anywhere from 373.1 hertz (Hz) in Paris to over 505 Hz in Saxony. Imagine a soprano soloist trying to hit the high E-flat she hit last night with a concert A500 tuning as a reference—the equivalent of almost reaching a high F-sharp in current tuning: nearly impossible. Today, many orchestras tune to an A440, although when I first came to Hollywood in the mid-1960s, the L.A. Philharmonic had a reputation for tuning to an A442, while some European orchestras were still using the darker-sounding A438.

 

‹ Prev