Human Error

Home > Other > Human Error > Page 41
Human Error Page 41

by James Reason


  and priming, 101-3

  schemata effect, 100-1

  convergent memory searches, 110-12

  corpus gathering, 13-14

  ‘creeping determinism,’ 91, 215

  crime and intention, 7

  ‘cross-talk’ errors, 29

  Davis-Besse nuclear power plant, 54, 237-8

  decision making

  computer model, 144-6

  generic error-modelling system, 65-6

  intelligent support systems, 237-9, 242

  normative theories, 36-40

  in productive systems, 203-4

  declarative knowledge, 129

  ‘default assignments,’ 34

  ‘default values,’ 66

  ‘defence in depth’ principle, 179-80

  DESSY studies, 91-2

  detached intentions, 71

  detectability of error (see also error detection), 60

  developmental perspective, 79-81

  diary records, 14

  dochotic listening, 27-8

  digital computers, 30

  distributed processing models, 30-1

  divergent memory searches, 110-12

  divided attention, 28-9

  ‘do nothing’ method, 163

  ‘double-capture’ slips, 68-70

  dual-task interference, 29

  dynamic environmental simulation system (see also DESSY), 91-2

  ecological interface design, 246-8

  encysting, 93

  environmental ‘capture,’ 71

  epistemic awareness, 113-14

  error classification, 10-12

  error detection, 148-72

  classification, 159

  cognitive processes, 167-71

  data-driven aspects, 159

  and error type, 9-10, 158-61

  feedback control, 149-50

  forcing functions, 161-2

  frequency biases, 170-1

  Italian studies, 160-1

  mistakes vs. slips, 60

  in problem solving, 9-10, 157-66

  Swedish studies, 158

  error detection rates, 165-7

  error forms, 13, 97-124

  error management, 244-6

  error prediction, 4

  error probabilities, 222-3, 229

  error proneness questionnaires, 239

  error reduction, 217-50

  error risk, 217-50

  error tolerant systems, 233, 246

  error types (see also knowledge-based errors; rule-based errors; skill-based errors)

  and cognition, 12-13

  error detection relationship, 166-7

  execution failures, 8

  experimental studies of error, 15-16

  expertise and error type, 57-8

  eye-witness testimony, 23

  failure tokens, 205, 210

  failure types, 205, 210

  fault diagnosis training, 241-3

  FAUST group, 244

  feedback control

  error detection, 149-50, 165

  and knowledge-based mistakes, 165

  production vs. safety, 203-4

  safety operations, 209-10

  and training errors, 245-6

  feedback delay, 91-2

  feedforward, 24-5

  feelings of knowing, 113-14

  focal working memory, 127-33

  focused attention, 26-8

  forcing functions, 161-2

  ‘fragment theory,’ 103

  frames and schemata, 34

  frequency biases

  and cognitive underspecification, 103-10

  and divergent memory, 111

  error detection, 170-1

  error form origin, 97

  knowledge retrieval, 115-23

  machine model of, 131-6

  and schema concept, 123

  ‘frequency paradox,’ 104

  Freudian slip, 21-2

  frontal lobe damage, 108

  fundamental attribution error

  in institutions, 212-13

  and irrationality, 41

  fundamental surprise error, 212-14

  ‘fuzzy rule’ model, 44-6

  ‘gagging’ device, 163

  GEMS (see also generic error-modelling

  system), 61-8

  General Problem Solver (Newell and Simon), 42

  general problem-solving rules, 78-9

  generalisations and cognition, 39

  generic error-modelling system (GEMS), 61-8

  Gestalt tradition, 23-4

  Ginna nuclear power plant, 55, 237

  global workspace model (Baars), 47-8

  groupthink syndrome, 41

  habit intrusions

  and blocked memory, 105-6

  and error prediction, 5, 107

  skill-based errors, 68-70

  halo effect, 90

  Herald of Free Enterprise, 193-4, 256

  heterarchical models, 30

  hindsight bias (see also knew-it-all-along effect), 38, 91, 215

  human cognitive reliability model, 225-6, 231

  human error probabilities, 222-3, 229

  human-interactive system, 175-6

  human reliability analysis

  peer review study, 230

  qualitative criteria, 232-4

  systematic comparisons, 231-2

  techniques, 221-9

  validity, 229-31

  illusion of control, 91

  illusions, Sully’s analysis, 20-1

  illusory correlation, 90

  immediate memory, 31-2

  impossible accident, 216

  inferences

  functions, 116

  knowledge retrieval, 116-19

  INPO analysis, 186-7

  instantiated schema, 35

  intellectual emergency reaction, 93

  intelligent decision aids, 237-9

  intentional action, 7-10, 52, 100

  intentions

  algorithm for intentional action, 6

  and error definition, 5-10

  in fallible machine, 131-3

  and schemata, 52, 100

  skill-based errors, 71-2

  varieties of, 5-6

  interference errors, 72

  InterLisp system, 164

  intuitive physics, 82

  involuntary actions, 7-10

  irrationality, 41-2

  Jars Test, 78

  judgement, heuristics, 39-40

  King’s Cross Underground disaster, 194, 257

  ‘knew-it-all-along’ effect (see also hindsight bias), 215

  knowledge-based errors

  assessment technique, 225-6

  detection of, 157-68

  detection rates, 166-8

  error ratio, 58-9

  and error types, 55-66

  experts vs. novices, 58

  failure modes, 86-96

  feedback control, 57, 165

  and forcing functions, 162

  generic error-modelling system, 61-8

  pathologies, 86-96

  and problem configurations, 86-7

  in problem solving, 65-6, 157-65

  in Rasmussen’s framework, 42-4

  reduction of, system, 246-8

  knowledge retrieval, 112-24

  laboratory studies of error, 15-16

  language errors, 79-80

  lapses, see slips and lapses

  late-selection’ theorists, 27

  latent errors

  case study analyses, 188-94

  and systems disasters, 173-216

  lexical errors, 155-6

  limb apraxias, 109

  line management, 204-5

  linear thinking, 92-3

  ‘Lisp Debugger,’ 164

  Lohhausen studies, 92-4

  matching conditions (see also similarity biases), 77

  means-ends analysis, 42

  memory aids, 239-42

  memory failures, 107

  memory illusions, 20-1

  memory organizing packets, 66


  memory span, 31-2

  Meringer’s influence, 22

  Minsky’s influence, 34

  mistakes

  attentional focus, 56

  definition, 9

  detectability, 9-10, 60, 160

  feedback availability, 165

  forcing function mismatches, 162

  and nature of error, 8-10, 53-61

  and performance level, 56

  monitoring failures, 63-4

  motor response errors, 154-5

  movement errors, 154-5

  multichannel processors, 30-1

  naive physics, 82

  naturalistic methods, 13-14

  neuropsychology, 24-5

  Newell and Simon’s model, 42

  nominal error probabilities, 223

  Norman-Shallice model, 36

  normative theories, 36-40

  North Anna nuclear power plant, 237, 243

  nuclear power plants

  error risk, 217-50

  latent errors, 173-216

  OATS technique, 224-5

  Oconee nuclear power plant, 227, 237

  omission errors, 184-7, 240

  omitted checks, 68-72

  operator action trees (OATS), 224-5

  optimising theories, 36-40

  overattention, 63, 73-4

  overconfidence, 89-90

  Oyster Creek nuclear power plant, 54, 60, 76, 165, 237

  parallel distributed processing, 46-7

  parallel search processes, 117

  pathogen metaphor, 197-9

  pattern recognition, 34

  perceptual errors, 154-5

  perceptual illusions, 20-1

  perceptual slips, 72

  performance shaping factors, 222, 228

  perseveration, 109, 155

  persistence-forecasting, 40-1

  personae, schema variant, 35

  phonological errors, 155-6

  phonological priming, 101-3

  place-losing, 46

  planning failures, 8, 12-13

  plans, schema variant, 35

  postural control

  automatic correction of, 150-4

  Head’s theory, 25

  Prairie Island nuclear power plant, 237

  predictable error, 3

  primary memory, 31-2

  priming, 101-3

  prior intention, 6-7

  probabilistic estimates, 4

  probabilistic risk assessment (PRA), 219-21, 233-4

  structure, 219-20

  ‘tree’ models, 219

  problem behaviour graph, 42

  problem solving

  and automated systems, 182-4

  cued error discovery, 162-3

  error detection, 157-61, 166

  error detection rates, 166

  ‘fuzzy rule’ model, 44-6

  generic error-modelling system, 65-6

  strategic and tactical aspects, 158

  problem space, 42

  productivity

  and safety, decisions, 203

  systems aspects, 199-201

  program counter failures, 71

  Prolog, 137, 141

  prospective memory, 107

  ‘prostheses,’ 239, 241

  prototypes, 35

  Psychology of Everyday Things, The, (Norman), 235-7

  Psychopathology of Everyday Life, The, (Freud), 22

  q-morphisms, 74

  qualitative predictions, 5

  quasi-homomorphisms, 74

  questionnaire studies, 14-15

  Rasmussen’s framework, 42-4

  Rasmussen’s survey, 184-5

  rationalist theories, 36-40

  rationality, 39

  recency effect, 32

  recurrent intrusions, 105-6

  redundancy, 77, 170-1

  relevance bias, 167

  representativeness heuristic, 40, 91

  resident pathogen metaphor, 197-9

  resource theories, 28-9

  rigidity and problem solving, 78

  risk management, 234

  Risoe National Laboratory, 246

  Rouse’s model, 44-6

  rule-based errors

  action deficiencies, 83-6

  assessment technique, 225-6

  connectionism distinction, 46-7

  detection of, 157-65

  detection rates, 166-8

  developmental perspective, 79-81

  encoding deficiencies, 81-2

  error ratio, 58-9

  and error types, 55-66

  expertise role, 57-8

  failure modes, 74-86

  feedforward control, 57

  generic error-modelling system, 61-8

  in problem solving, 44-6, 65-6, 157-65

  Rasmussen’s framework, 42-4

  reduction of, systems, 246-8

  rule strength, 77

  situational factors, 59-60

  Rumelhart’s influence, 35

  S-rules, 44-5, 55

  safety, 206-7

  feedback loops, 209-10

  organisational reactions, 211-12

  and production, decisions, 203

  safety information system, 209-10

  safety parameter display systems, 238

  ‘satisficing,’ 37-9

  schemata

  Bartlett’s theory, 25-6

  contemporary theories, 33-6

  general activators, 99-100

  human error framework, 51-2, 66

  specific activators, 99-100

  schizophrenic language, 108-9

  scripts

  human error framework, 66

  schema variant, 35

  Seabrook nuclear power plant, 227

  selective attention, 87

  selective listening, 27-8

  ‘self-correct’ devices, 164

  self-knowledge, 248

  self-monitoring

  error detection, 149

  problem-solving errors, 157-61

  skill-based errors, 149-57

  self-report questionnaires, 14-15

  semantic context, 181-3

  semantic knowledge, 112-24

  serial search processes, 117

  SHARP technique, 229

  short-term memory, 31-2

  similarity biases

  and cognition, 103-10

  and convergent memory, 111

  error detection, 170-1

  error form origin, 97

  knowledge retrieval, 114-23

  machine model of, 130-6

  and rationality, 39

  simulators

  error investigation, 16

  training use, 244

  situational factors, 59-60

  Sizewell B nuclear reactor, 213, 230

  skill-based errors

  assessment technique, 225-6

  and attention, 68-72

  detection, 149-57, 167

  detection rates, 166-8

  and error ratio, 58-9

  and error types, 55-65

  failure modes, 68-74

  feedforward control, 57

  generic error-modelling system, 61-8

  Rasmussen’s framework, 42-4

  reduction of, 246-8

  skill-rule-knowledge framework, 42-3

  ‘skip errors,’ 167

  SLIM technique, 228-9, 230

  SLIM-SAM software, 228

  SLIM-SARAH software, 228

  slips and lapses

  attentional focus, 56, 68-70, 107

  cognitive factors, 107

  detectability, 9-10, 156-7, 160

  feedforward control, 57

  and forcing functions, 162

  memory aid use, 239-41

  naturalistic studies, 63, 65, 149

  and nature of error, 8-9, 53-61

  omitted checks, 68-70

  and performance level, 56

  slips of the tongue, 106, 149

  specific problem-solving rules, 78-9

  speech errors

  correction rate, 166


  detection and correction of, 155-6

  Meringer’s study, 22, 155

  ‘spew hypothesis,’ 104

  spoonerisms, 72, 156

  standardisation, 237

  statistical problem solving, 166

  ‘step-ladder’ model, 44

  stereotypical reactions, 44

  stress

  and knowledge-based errors, 92

  and training errors, 245

  stress-vulnerability hypothesis, 15

  strong-associate substitutions, 109

  ‘strong-but-wrong’ routines, 57-8

  ‘strong-but-wrong’ rules, 75-6

  strong habit exclusion, 70

  strong habit intrusion, 68-70

  strong schema capture, 46

  Subjective Expected Utility Theory, 37

  Success likelihood index methodology (SLIM), 228-31

  Sully, James, 20-1

  supervisory control, 175

  automated systems, 175-82

  definition, 175

  temporal aspects, 182

  symptom rules , 44-5, 55

  Systematic human action reliability procedure (SHARP), 229

  systems failures

  accident causation, 199-214

  automation role, 174-84

  case study analyses, 188-94

  and latent errors, 173-216

  resident pathogen metaphor, 197-9

  T-rules, 44-5, 55

  ‘talk aloud’ technique, 160

  task-interactive system, 175

  Technique for Human Error Rate Prediction (THERP), 221-4, 237

  technological factors, 174-82, 250

  TESEO technique, 226-7, 231

  test-wait-test-exit task, 73

  text comprehension, 35

  THERP technique, 221-4, 230-1

  Three Mile Island, 54-5, 60, 164-5, 189-91, 213-14, 251

  time-reliability techniques, 224-6

  tip-of-the-tongue states, 105-6

  Toledo Edison’s nuclear power plant, 181

  topographic rules, 44-5, 55

  training errors, 244-6

  training issues, 241-6

  transposition errors, 155-6

  ‘tree models,’ 219

  unintended actions, 8-10

  unitization hypothesis, 170-1

  unsafe acts, 206-7

  vagabonding, 93

  variable error, 3-5

  vigilance, 180

  violations

  classification, 195-6

  cognitive mechanisms, 196-7

  error distinction, 194-7

  visual modality, 127-8

  visual errors, 154-5

  visual search task, 155

  visuo-spatial scratch pad, 128

  volition, 7-10

  warning devices, 163

  word frequency effect, 103-4

  word length, 31-2

  working memory

  concept of, 32-3

  machine model, 125-37, 144

  ‘workspace,’ 2

  Zeebrugge disaster, 193-4

 

‹ Prev