9. Eat your frogs first. Do the hardest thing earliest in the day, when you are fresh.
10. Make a mental contrast. Imagine where you’ve come from and contrast that with the dream of where your studies will take you. Post a picture or words in your workspace to remind you of your dream. Look at that when you find your motivation lagging. This work will pay off both for you and those you love!
TEN RULES OF BAD STUDYING
Avoid these techniques—they can waste your time even while they fool you into thinking you’re learning!
1. Passive rereading—sitting passively and running your eyes back over a page. Unless you can prove that the material is moving into your brain by recalling the main ideas without looking at the page, rereading is a waste of time.
2. Letting highlights overwhelm you. Highlighting your text can fool your mind into thinking you are putting something in your brain, when all you’re really doing is moving your hand. A little highlighting here and there is okay—sometimes it can be helpful in flagging important points. But if you are using highlighting as a memory tool, make sure that what you mark is also going into your brain.
3. Merely glancing at a problem’s solution and thinking you know how to do it. This is one of the worst errors students make while studying. You need to be able to solve a problem step-by-step, without looking at the solution.
4. Waiting until the last minute to study. Would you cram at the last minute if you were practicing for a track meet? Your brain is like a muscle—it can handle only a limited amount of exercise on one subject at a time.
5. Repeatedly solving problems of the same type that you already know how to solve. If you just sit around solving similar problems during your practice, you’re not actually preparing for a test—it’s like preparing for a big basketball game by just practicing your dribbling.
6. Letting study sessions with friends turn into chat sessions. Checking your problem solving with friends, and quizzing one another on what you know, can make learning more enjoyable, expose flaws in your thinking, and deepen your learning. But if your joint study sessions turn to fun before the work is done, you’re wasting your time and should find another study group.
7. Neglecting to read the textbook before you start working problems. Would you dive into a pool before you knew how to swim? The textbook is your swimming instructor—it guides you toward the answers. You will flounder and waste your time if you don’t bother to read it. Before you begin to read, however, take a quick glance over the chapter or section to get a sense of what it’s about.
8. Not checking with your instructors or classmates to clear up points of confusion. Professors are used to lost students coming in for guidance—it’s our job to help you. The students we worry about are the ones who don’t come in. Don’t be one of those students.
9. Thinking you can learn deeply when you are being constantly distracted. Every tiny pull toward an instant message or conversation means you have less brain power to devote to learning. Every tug of interrupted attention pulls out tiny neural roots before they can grow.
10. Not getting enough sleep. Your brain pieces together problem-solving techniques when you sleep, and it also practices and repeats whatever you put in mind before you go to sleep. Prolonged fatigue allows toxins to build up in the brain that disrupt the neural connections you need to think quickly and well. If you don’t get a good sleep before a test, NOTHING ELSE YOU HAVE DONE WILL MATTER.
PAUSE AND RECALL
Close the book and look away. What were the most important ideas in this book? As you reflect, consider also how you will use these ideas to help reshape your learning.
afterword
My eighth-grade math and science teacher had a powerful impact on my life. He plucked me from the back of the class and motivated me to strive for excellence. I repaid him in high school by getting a D in geometry—twice. I just couldn’t get the material on my own, and I didn’t have the luxury of a great teacher to prod me in the ways I needed. Eventually, in college, I figured it out. But it was a frustrating journey. I wish I’d had a book like this back then.
Flash forward a decade and a half. My daughter turned math homework into a form of torture Dante would be too shy to write about. She would hit a wall and then hit it again and again. When she finally finished crying, she would circle around and eventually figure it out. But I could never get her to just back off and regroup without the drama. I let her read this book. The first thing she said was, “I wish I’d had this book when I was in school!”
There has long been a stream of potentially productive study advice coming from scientists. Unfortunately, it has seldom been translated so the average student can easily grasp and use it. Not every scientist has a knack for translation, and not every writer has a firm grasp of the science. In this book, Barbara Oakley threaded this needle beautifully. Her use of vivid examples and explanations of the strategies reveals not only how useful but how credible these ideas are. When I asked my daughter why she liked the advice in the book, even though I had mentioned several of the techniques to her when she was in middle school, she said, “She tells you why and it makes sense.” Another hit to my parental ego!
Now that you have read this book, you have been exposed to some simple yet potentially powerful strategies—strategies, by the way, that could benefit you in more than just math and science. As you’ve discovered, these strategies grew from considerable evidence about how the human mind works. The interplay between emotion and cognition, though seldom put into words, is an essential component to all learning. In her own way, my daughter pointed out that studying isn’t just about the strategies. You have to be convinced that those strategies can actually work. The clear and compelling evidence you read in this book should give you the confidence to try techniques without the doubt and resistance that often sabotages our best efforts. Learning is, of course, personally empirical. The ultimate evidence will come when you evaluate your performance and attitude once you earnestly deploy these strategies.
I am now a college professor and I have advised thousands of students over the years. Many students try to avoid math and science because they “are not good at it” or “don’t like it.” My advice to these students has always been the same advice I gave my daughter: “Get good at it, and then see if you still want to quit.” After all, isn’t education supposed to be about getting good at challenging things?
Remember how difficult learning to drive was? Now, it is almost automatic and gives you a sense of independence you will value throughout their adult life. By being open to new strategies like the ones in this book, learners now have the opportunity to move past anxiety and avoidance toward mastery and confidence.
It is now up to you: Get good!
—David B. Daniel, Ph.D.
Professor, Psychology Department
James Madison University
acknowledgments
In acknowledging the support of these individuals, I would like to make clear that any errors of fact or interpretation in this book are my own. To anyone whose name I might have inadvertently omitted, my apologies.
Underlying this entire effort have been the unwavering support, encouragement, enthusiasm, and superb insight of my husband, Philip Oakley. We met thirty years ago at the South Pole Station in Antarctica—truly I had to go to the ends of the earth to meet that extraordinary man. He is my soul mate and my hero. (And, in case you might have wondered, he is also the man in the puzzle.)
A master mentor throughout my teaching career is Dr. Richard Felder—he has made an enormous difference in how that career unfolded. Kevin Mendez, this book’s artist, has done an incredible job in rendering the illustrations—I am in awe of his artistic ability and vision. Our elder daughter, Rosie Oakley, has provided keen insight and unbelievable encouragement throughout the development of this book. Our younger daughter, Rachel Oakley, has always been a pi
llar of support in our lives.
My good friend Amy Alkon has what amounts to editorial X-ray vision—she has an uncanny ability to ferret out areas for improvement, and with her help this book has reached a far higher level of clarity, accuracy, and wit. My old friend Guruprasad Madhavan of the National Academy of Sciences has helped me see the big-picture implications, as has our mutual friend Josh Brandoff. Writing coach Daphne Gray-Grant has also been a great supporter in the development of this work.
I would especially like to acknowledge the foundational efforts of Rita Rosenkranz, a literary agent of unparalleled excellence. At Penguin, my deepest thanks and appreciation go to Sara Carder and Joanna Ng, whose vision, editorial acumen, and vast expertise with publishing have helped immeasurably in strengthening this book. In particular, I can only wish that every author would be so lucky as to work with someone who possesses Joanna Ng’s extraordinary editorial talent. I would also like to extend my thanks to Amy J. Schneider, whose copyediting abilities have been a wonderful boon for this work.
Special thanks go to Paul Kruchko, whose simple question about how I changed got me started on this book. Dante Rance at the Interlibrary Loan Department has continually gone well above and beyond the call of duty; my thanks as well to the supremely capable Pat Clark. Many colleagues have been very supportive in this work, particularly Professors Anna Spagnuolo, László Lipták, and Laura Wicklund in math; Barb Penprase and Kelly Berishaj in nursing; Chris Kobus, Mike Polis, Mohammad-Reza Siadat, and Lorenzo Smith in engineering; and Brad Roth in physics. Aaron Bird, U.S. training manager for CD-adapco, and his colleague Nick Appleyard, vice president at CD-adapco, have both been of exceptional help. I would also like to thank Tony Prohaska for his keen editorial eye.
The following people have also been remarkably helpful in sharing their expertise: Sian Beilock, Marco Bellini, Robert M. Bilder, Maria Angeles Ramón y Cajal, Norman D. Cook, Terrence Deacon, Javier DeFelipe, Leonard DeGraaf, John Emsley, Norman Fortenberry, David C. Geary, Kary Mullis, Nancy Cosgrove Mullis, Robert J. Richards, Doug Rohrer, Sheryl Sorby, Neel Sundaresan, and Nicholas Wade.
Some of the world’s top-ranked university and college professors, as noted on RateMyProfessors.com, have lent invaluable support to this effort. Their expertise includes mathematics, physics, chemistry, biology, science, engineering, business, economics, finance, education, psychology, sociology, nursing, and English. High school teachers from top magnet schools have contributed as well. I would like to particularly acknowledge the assistance of the following individuals, who have read all or portions of the book and provided helpful feedback and insights: Lola Jean Aagaard-Boram, Shaheem Abrahams, John Q. Adams, Judi Addelston, April Lacsina Akeo, Ravel F. Ammerman, Rhonda Amsel, J. Scott Armstrong, Charles Bamforth, David E. Barrett, John Bartelt, Celso Batalha, Joyce Miller Bean, John Bell, Paul Berger, Sydney Bergman, Roberta L. Biby, Paul Blowers, Aby A. Boumarate, Daniel Boylan, Bob Bradshaw, David S. Bright, Ken Broun Jr., Mark E. Byrne, Lisa K. Davids, Thomas Day, Andrew DeBenedictis, Jason Dechant, Roxann DeLaet, Debra Gassner Dragone, Kelly Duffy, Alison Dunwoody, Ralph M. Feather Jr., A. Vennie Filippas, John Frye, Costa Gerousis, Richard A. Giaquinto, Michael Golde, Franklin F. Gorospe IV, Bruce Gurnick, Catherine Handschuh, Mike Harrington, Barrett Hazeltine, Susan Sajna Hebert, Linda Henderson, Mary M. Jensen, John Jones, Arnold Kondo, Patrycja Krakowiak, Anuska Larkin, Kenneth R. Leopold, Fok-Shuen Leung, Mark Levy, Karsten Look, Kenneth MacKenzie, Tracey Magrann, Barry Margulies, Robert Mayes, Nelson Maylone, Melissa McNulty, Elizabeth McPartlan, Heta-Maria Miller, Angelo B. Mingarelli, Norma Minter, Sherese Mitchell, Dina Miyoshi, Geraldine Moore, Charles Mullins, Richard Musgrave, Richard Nadel, Forrest Newman, Kathleen Nolta, Pierre-Philippe Ouimet, Delgel Pabalan, Susan Mary Paige, Jeff Parent, Vera Pavri, Larry Perez, William Pietro, Debra Poole, Mark Porter, Jeffrey Prentis, Adelaida Quesada, Robert Riordan, Linda Rogers, Janna Rosales, Mike Rosenthal, Joseph F. Santacroce, Oraldo “Buddy” Saucedo, Donald Sharpe, Dr. D. A. Smith, Robert Snyder, Roger Solano, Frances R. Spielhagen, Hilary Sproule, William Sproule, Scott Paul Stevens, Akello Stone, James Stroud, Fabian Hadipriono Tan, Cyril Thong, B. Lee Tuttle, Vin Urbanowski, Lynn Vazquez, Charles Weidman, Frank Werner, Dave Whittlesey, Nader Zamani, Bill Zettler, and Ming Zhang.
The following students have contributed insightful quotes, sidebars, or suggestions for which I am very grateful: Natalee Baetens, Rhiannon Bailey, Lindsay Barber, Charlene Brisson, Randall Broadwell, Mary Cha, Kyle Chambers, Zachary Charter, Joel Cole, Bradley Cooper, Christopher Cooper, Aukury Cowart, Joseph Coyne, Michael Culver, Andrew Davenport, Katelind Davidson, Brandon Davis, Alexander Debusschere, Hannah DeVilbiss, Brenna Donovan, Shelby Drapinski, Trevor Drozd, Daniel Evola, Katherine Folk, Aaron Garofalo, Michael Gashaj, Emanuel Gjoni, Cassandra Gordon, Yusra Hasan, Erik Heirman, Thomas Herzog, Jessica Hill, Dylan Idzkowski, Weston Jeshurun, Emily Johns, Christopher Karras, Allison Kitchen, Bryan Klopp, William Koehle, Chelsey Kubacki, Nikolas Langley-Rogers, Xuejing Li, Christoper Loewe, Jonathon McCormick, Jake McNamara, Paula Meerschaert, Mateusz Miegoc, Kevin Moessner, Harry Mooradian, Nadia Noui-Mehidi, Michael Orrell, Michael Pariseau, Levi Parkinson, Rachael Polaczek, Michelle Radcliffe, Sunny Rishi, Jennifer Rose, Brian Schroll, Paul Schwalbe, Anthony Sciuto, Zac Shaw, David Smith, Kimberlee Somerville, Davy Sproule, P. J. Sproule, Dario Strazimiri, Jonathan Strong, Jonathan Sulek, Ravi Tadi, Aaron Teachout, Gregory Terry, Amber Trombetta, Rajiv Varma, Bingxu Wang, Fangfei Wang, Jessica Warholak, Shaun Wassell, Malcolm Whitehouse, Michael Whitney, David Wilson, Amanda Wolf, Anya Young, Hui Zhang, and Cory Zink.
references
Aaron, R, and RH Aaron. Improve Your Physics Grade. New York: Wiley, 1984.
Ainslie, G, and N Haslam. “Self-control.” In Choice over Time, edited by G Loewenstein and J Elster, 177–212. New York: Russell Sage Foundation, 1992.
Allen, D. Getting Things Done. New York: Penguin, 2001.
Amabile, TM, et al. “Creativity under the gun.” Harvard Business Review 80, 8 (2002): 52.
Amidzic, O, et al. “Pattern of focal γ-bursts in chess players.” Nature 412 (2001): 603–604.
Andrews-Hanna, JR. “The brain’s default network and its adaptive role in internal mentation.” Neuroscientist 18, 3 (2012): 251–270.
Armstrong, JS. “Natural learning in higher education.” In Encyclopedia of the Sciences of Learning, 2426–2433. New York: Springer, 2012.
Arum, R, and J Roksa. Academically Adrift. Chicago: University of Chicago Press, 2010.
Baddeley, A, et al. Memory. New York: Psychology Press, 2009.
Baer, M, and GR Oldham. “The curvilinear relation between experienced creative time pressure and creativity: Moderating effects of openness to experience and support for creativity.” Journal of Applied Psychology 91, 4 (2006): 963–970.
Baumeister, RF, and J Tierney. Willpower. New York: Penguin, 2011.
Beilock, S. Choke: New York: Free Press, 2010.
Bengtsson, SL, et al. “Extensive piano practicing has regionally specific effects on white matter development.” Nature Neuroscience 8, 9 (2005): 1148–1150.
Bilalić, M, et al. “Does chess need intelligence?—A study with young chess players.” Intelligence 35, 5 (2007): 457–470.
———. “Why good thoughts block better ones: The mechanism of the pernicious Einstellung (set) effect.” Cognition 108, 3 (2008): 652–661.
Boice, R. Procrastination and Blocking. Westport, CT: Praeger, 1996.
Bouma, A. Lateral Asymmetries and Hemispheric Specialization. Rockland, MA: Swets & Zeitlinger, 1990.
Bransford, JD, et al. How People Learn. Washington, DC: National Academies Press, 2000.
Brent, R, and RM Felder. “Learning by solving solved problems.” Chemical Engineering Education 46, 1 (2012): 29–30.
Brown, JS, et al. “Situated cognition and the culture of learning.” Educational Researcher 18, 1 (1989): 32–42.
Burson K, et al
. “Skilled or unskilled, but still unaware of it: how perceptions of difficulty drive miscalibration in relative comparisons.” Journal of Personality and Social Psychology 90, 1 (2006): 60–77.
Buzan, T. Use Your Perfect Memory. New York: Penguin, 1991.
Cai, Q, et al. “Complementary hemispheric specialization for language production and visuospatial attention.” PNAS 110, 4 (2013): E322–E330.
Cannon, DF. Explorer of the Human Brain. New York: Schuman, 1949.
Carey, B. “Cognitive science meets pre-algebra.” New York Times, September 2, 2012; http://www.nytimes.com/2013/09/03/science/cognitive-science-meets-pre-algebra.html?ref=science.
Carpenter, SK, et al. “Using spacing to enhance diverse forms of learning: Review of recent research and implications for instruction.” Educational Psychology Review 24, 3 (2012): 369–378.
Carson, SH, et al. “Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals.” Journal of Personality and Social Psychology 85, 3 (2003): 499–506.
Cassilhas, RC, et al. “Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms.” Neuroscience 202 (2012): 309–17.
Cat, J. “On understanding: Maxwell on the methods of illustration and scientific metaphor.” Studies in History and Philosophy of Science Part B 32, 3 (2001): 395–441.
Charness, N, et al. “The role of deliberate practice in chess expertise.” Applied Cognitive Psychology 19, 2 (2005): 151–165.
Chase, WG, and HA Simon. “Perception in chess.” Cognitive Psychology 4, 1 (1973): 55–81.
A Mind For Numbers Page 22