Before the Dawn: Recovering the Lost History of Our Ancestors

Home > Other > Before the Dawn: Recovering the Lost History of Our Ancestors > Page 5
Before the Dawn: Recovering the Lost History of Our Ancestors Page 5

by Nicholas Wade


  The interplay of these three forces may sound like a recipe for chaos, yet evolution’s mechanisms do in fact bring into being, over the course of long periods of time, structures of extraordinary complexity, such as the human ear or eye. Because such adaptations are ones that human engineers could create only by design, biologists often talk about evolution as if it possessed intent or forethought. But this is just a shorthand way of referring to the evolutionary process and is not meant to imply that evolution has any goal in mind.

  In the sense of the biologists’ shorthand, it could be said that with the development of language, evolution had accomplished a major part of the task of morphing an ape into a human, and of shaping humans into a truly social species. Since language is such a defining faculty of modern humans, providing perhaps the only clear distinction between people and other species, its nature and evolution merit a closer look.

  3

  FIRST WORDS

  [Language] certainly is not a true instinct, for every language has to be learnt. It differs, however, widely from all ordinary arts, for man has an instinctive tendency to speak, as we see in the babble of our young children; whilst no child has an instinctive tendency to brew, bake or write.

  CHARLES DARWIN, THE DESCENT OF MAN

  EVOLUTION’S RAW MATERIAL is the gene pool of a species and the mutations that arise at random in those genes. This formidable constraint means that an organ or faculty cannot be created out of nothing; it can only be shaped, by gradual stages, out of some existing structure, and each of those intermediate stages must confer advantage in its own right.

  One reason why human language is so deeply puzzling to biologists is that it seems to defy this rule. It is a vibrant, fully developed faculty in people, but is not possessed, even in rudimentary form, by any other species. It seems to have popped up into the recent human line from nowhere.

  The origins of language would perhaps seem somewhat less mysterious if our archaic cousins, the Neanderthals and Homo erectus, had survived to tell what kind of communication skills they commanded. But these branches of the hominid tree have been docked, leaving only one survivor.

  Primatologists have therefore looked for the roots of the language faculty in social primates such as apes and monkeys. These species do indeed possess many of the neural systems that are needed in support of language. They can make a wide range of elaborate sounds. They have acute senses of hearing with which to perceive and analyze the sounds made by members of their own species. As for thought, there is no doubt that the social primates are capable of quite elaborate cognitive processes, such as those required in keeping tally of who one’s relations are, who owes one favors, and where one stands in the social hierarchy.

  But despite possessing much of the neural equipment for speech, monkeys and apes simply lack the ability to translate their thought into anything resembling human language.

  Several primate species have communication systems of considerable sophistication. Gelada baboons have 22 different kinds of call, and gorillas have been recorded using some 30 different gestures.34 One of the best studied animal communication systems is the repertoire of alarm calls uttered by the vervet monkeys of East Africa. Vervets lead a perilous existence, at constant risk from eagles, leopards and snakes, and they possess a distinctive warning call for each. When researchers record one of these calls and play it back to other vervets, the monkeys reliably scan the skies in response to the eagle call, look down at the ground at the snake call, and leap into bushes at the leopard call.

  In an interesting link with human language, the basic mechanisms of the vervet’s calls seem to be innate but are refined by learning. Baby vervets will give the eagle call in response to almost anything airborne, including falling leaves, but by the time they are adults the call has become focused on eagles, particularly the martial eagle, while nonpredatory birds like vultures are ignored.35

  It is tempting to suppose that vervets have therefore developed a word for eagle, but that is not really the case. A vervet cannot combine two of its cries to state that, in its opinion, “Eagles are more dangerous than leopards!” Its calls can be used only as one-note alarms to warn that “An eagle is coming, take cover!” or “Leap—it’s a leopard!”

  Besides appearing to lack precise words for things, animals also lack the ability for syntax. Though capuchin monkeys seem to obey an ordering rule in their calls (for example, call A is made before calls B and C but never after them), the meaning of such ordered calls, if any, is not yet clear to researchers.36 Strenuous efforts have been made to teach language to chimpanzees. The first attempts focused on training the chimps to make humanlike sounds. Then, when the unsuitability of their vocal apparatus was accepted, they were taught to communicate in sign language. Chimps can learn a number of signs—about 125, according to their trainers, more like 25, according to skeptics—but there is no consistent evidence that they use the order of the signs to confer meaning, as is the essence of human language. Typical utterances of Nim Chimpsky, a chimp trained by Herbert Terrace of Columbia University, were “Me banana you banana you me give,” and “Give orange me give eat orange me eat orange give me eat orange give me you.” “The chimp’s abilities at anything one would want to call grammar were next to nil,” concludes Steven Pinker of Harvard University.37

  Still, evolution’s design principle is continuity, so there must have been some neurological structure in the mammalian brain that was adapted to generate the combinatorial systems of vocabulary and grammar, just as the mammalian ear and voice box were adjusted to analyze human voices and generate human speech sounds. In an unusual alliance, the animal communication experts Marc Hauser and Tecumseh Fitch recently joined with the linguist Noam Chomsky to propose that the human capacity for syntax might have evolved out of an animal brain module designed for some other purpose, such as navigation.38 Their argument is that the essential feature of language is recursion, the ability to embed one phrase inside another in an indefinitely long chain. Recursion may also be a feature of faculties like navigation that require an animal to remember how to get from A to D, with an excursion to B and C if the way is blocked. If the genes that specify the brain’s navigation module were accidentally duplicated, the spare set would be free to evolve and perhaps acquire the function of encoding thought into language.

  The Nature of Language

  Many people think that thought would be impossible without language, and that the two are pretty much the same. Others equate language with speech. In the view of linguists, neither proposition is true. Animals may have quite rich thought processes—chimpanzees certainly know the position of all the individuals in their hierarchy and who must be recruited in a conspiracy—but are unable to put their thoughts into words. And speech is just one modality for language, which can also be written, or conveyed as signs, as in American Sign Language. Linguists regard this and other signing systems as proper languages with the same properties as spoken languages, including a fully developed syntax, or set of grammatical rules.

  In the view of linguists, language is neither thought nor speech but rather a system for translating thought into a physical output, usually speech or writing. The brain behaves as if it were performing this translation process with a pair of combinatorial systems, one of which generates vocabulary, the other syntax.

  The combinatorial system for vocabulary is a remarkable solution to a difficult problem. Many animal species communicate with a set of calls, each of which has a specific meaning. If the same principle were followed in human language, the calls after a certain number would start to merge into one other and become very hard to distinguish. But natural selection has somehow hit on a way of generating infinite variety, by basing the vocabulary system on a very small set of individually discrete sounds. The sounds can be joined in a limitless number of combinations, and any of these compound sounds can be arbitrarily associated with a meaning to form words. The system is called combinatorial because it is based on combining di
fferent elements to generate words.

  The combinatorial system for syntax is tricky to describe because it seems to perform several different though related tasks. The original fix on it came from Noam Chomsky’s insight that there must be a universal system in the human brain for allowing children to learn the grammatical rules of whatever language they hear spoken around them. Languages have many different rules of grammar, but all seem to be variations on the same model. Chomsky called this learning machinery Universal Grammar, but the phrase is also used to refer to the basic design underlying all grammars.

  This proposal still attracts objections from researchers who believe the mind is a general purpose learning system, a blank slate with no prepro gramming or genetically based circuitry dedicated to particular behaviors such as the faculty for language. It’s certainly true that human behavior seems to be under conscious control to a far greater extent than is that of other animals. But equally it is clear that many behaviors in animals are genetically guided. In some animals, like the laboratory roundworm, biologists have already learned how to alter certain genes and induce a different behavior. It’s reasonable to assume that there is a genetic basis for much human behavior, particularly such basic but highly complex faculties as learning a language or recognizing faces.

  In the case of language, the combinatorial systems for vocabulary and syntax are so sophisticated that it seems unlikely an infant could quickly learn them from scratch. It would seem far more efficient for evolution to embed the general ability for learning language in the brain’s neural circuitry. As Darwin observed, the ability to learn the spoken language seems instinctual, but the ability to write is not, which is why it must be learned so laboriously in school. In support of the view that the basic elements of language are innate, a human gene that seems fairly specific to language has recently been identified, as discussed below.

  The fact that children around the world learn languages so easily, and at the same stage of development, points strongly to the unfolding of a genetic program as the children reach a certain age. Chomsky asserted that Universal Grammar was innate, and indeed the language-learning machinery seems to be one of the many developmental programs that are wired into the genes and scheduled to unfold at a given time.

  But Chomsky and other theoretical linguists have been less interested in the question of what evolutionary stimulus might have prompted the evolution of language. No full length article about the evolution of language appeared in the Linguistic Society of America’s journal Language until 2000. “Why linguists have tacitly accepted just such a self-denying ordinance should be a topic of some interest to sociologists of science,” writes Derek Bickerton of the University of Hawaii, one of the few linguists to have explored the origin of language.39

  Several leading linguists blame Chomsky for the neglect. His proposed system of Universal Grammar was such a complicated mechanism that his critics argued there was no way it could have evolved, since it would have been useless until the full structure was in place. This was a misguided criticism since evolution explains very well how enormously complex organs such as the eye or ear have evolved. Nonetheless, Chomsky, rather than debate the point, discouraged any discussion of evolution, several leading linguists now say. “Opponents of UG argue that there couldn’t be such a thing as UG, because there is no evolutionary route to arrive at it,” writes Ray Jackendoff. “Chomsky, in reply, has tended to deny the value of evolutionary argumentation.” 40

  “To the extent that Chomsky has been willing to speculate on language origins at all, his remarks have only served to discourage interest in the topic among theoretical linguists. He has adamantly opposed, for example, the idea that the principles of UG arose by virtue of their utility in fostering the survival and reproductive possibilities of those individuals possessing them,” writes Frederick Newmeyer, a linguist at the University of Washington, Seat tle.41 These two critics are not without standing; Newmeyer was president of the Linguistic Society of America in 2002, Jackendoff the following year.

  Chomsky denies that he ever discouraged people from studying the evolution of language and says that his views have been misinterpreted. “I have never expressed the slightest objection to work on the evolution of language,” he says. He outlined his views briefly in lectures 25 years ago but left the subject hanging, he said, because not enough was understood. He still believes that it is easy to make up all sorts of situations to explain the evolution of language but hard to determine which ones, if any, make sense.42

  For outsiders looking in, it’s hard to understand why linguists such as Newmeyer and Jackendoff would blame Chomsky for the entire profession’s neglect of evolution, given that his colleagues, as independent academics, were presumably capable of thinking for themselves. However, Chomsky did have a significant impact on what others thought, says Steven Pinker, in part because of his intellectual stature and in part because of an aggressive style of debate that polarized the whole field.

  “Why should one man’s opinion count for so much?” Pinker asks. “The fact is that Chomsky has had, and continues to have, an outsize influence in linguistics. He has rabid devotees, who hang on his every footnote, and sworn enemies, who say black whenever he says white. This doesn’t leave much space for linguists who accept some of his ideas (language as a mental, combinatorial, complex, partly innate system) but not others (the baroque and ever-changing technical details of his theory of grammar, his hostility to evolution or any other explanation of language in terms of its function).”43

  Like other social scientists, linguists have not made a habit of looking to evolution for explanations, even though it is the bedrock theory of biology. Pinker was one of the first linguists to do so. With Paul Bloom, he wrote an influential article with a self-declared “incredibly boring” goal. Its purpose was to explain to linguists that, contrary to the views of Chomsky and the science historian Stephen Jay Gould, “human language, like other specialized biological systems, evolved by natural selection.”44

  Pidgins, Creoles and Sign Languages

  One of the Chomskyans’ problems with evolution of language, that language is too complex to have halfway steps, has been addressed by Derek Bickerton. Bickerton became interested in the subject through his study of a fascinating language phenomenon, the development of creoles from pidgins. Pidgins are languages of limited vocabulary and minimal grammar, usually invented by two populations who have no language in common. The children of pidgin-speakers do something very interesting: they spontaneously develop the pidgin into a fully fledged language with proper grammatical rules. These developed pidgin languages are called creoles.

  It seemed to Bickerton, as he studied Hawaiian creoles, that their development offered an insight into the evolution of human language. The first language was pidgin-like, he suggested, consisting mostly of vocabulary, and syntax was grafted on later. Several possible remnants of this proto-language still survive. If children are not exposed to language in early childhood, when their Universal Grammar machine is switched on and primed to learn, they may never learn any language properly. This happens very rarely, in the case of feral children allegedly brought up by animals, or when pathological parents imprison their children in the house and refuse to speak to them. Genie, a 13-year-old California girl, was found in 1970 wandering the streets with her mother. The two had escaped from a house where Genie had been penned in a bedroom from the age of 18 months and denied conversation. After her rescue, intense efforts were made to teach her to talk, but she never acquired fully grammatical language. Her utterances were stuck at the level of sentences like “Want milk,” or “Applesauce buy store.”45

  Even this primitive form of language could have been extremely useful to an early human society. Other possible echoes of the inferred proto-language can be heard in syntax-free utterances such as “Ouch!” or the more interesting “Shh!,” which requires a listener.46

  Recently linguists have developed a new window into the innate basis
of syntax through a remarkable discovery—the detection of two new languages in the act of coming to birth. Both are sign languages, developed spontaneously by deaf communities whose members were not taught the standard sign languages of their country. One is Nicaraguan Sign Language, invented by children in a Nicaraguan school for the deaf. The other, Al-Sayyid Bedouin Sign Language, was developed by members of a large Bedouin clan who live in a village in the Negev desert of Israel.

  The Nicaraguan case began when children were brought to a school for the deaf founded in 1977 by Hope Somosa, the wife of the Nicaraguan dictator. 47 Instructors noticed that the children had learned little from their Spanish lessons but had developed a system of signs for talking to one another. Each generation of kids taught it to the next, and the language has rapidly evolved from a set of gestures into a sophisticated language with its own syntax.

  The Al-Sayyid clan consists of some 3,500 people descended from a single founder who arrived 200 years ago from Egypt and married a local woman. Since the third generation, marriage within the clan has been encouraged, so there is a considerable level of inbreeding. Two of the couple’s five sons were deaf, as are about 150 members of the community today. The clan’s village is isolated in part by geography and even more by social barriers, since other Bedouin look down on them. Its deaf members did not go to school until recently and so were not exposed to either Israeli or Jordanian sign languages. They developed their own, and the language is also used by their hearing relatives to communicate with them.48

 

‹ Prev