Before the Dawn: Recovering the Lost History of Our Ancestors

Home > Other > Before the Dawn: Recovering the Lost History of Our Ancestors > Page 13
Before the Dawn: Recovering the Lost History of Our Ancestors Page 13

by Nicholas Wade


  Because Europe’s archaeology, languages and genetics have so far received more attention than those of any other region of the world, Europe is the best theater in which to follow the history of human foraging societies.

  On the basis of stone tools, archaeologists have distinguished a succession of European cultures in the Upper Paleolithic age. The earliest, the Aurignacian, lasted from 45,000 to 28,000 years ago. Sites with Aurignacian tools occur in France, Italy and much of eastern Europe, with an outlying province in the Levant. The Aurignacians were presumably accomplished fighters since it was they who steadily drove back and eventually exterminated the fierce Neanderthals. But their culture was not purely martial; it included the magnificent artists who decorated the Chauvet cave in the Ardèche Valley of France, the earliest known of the great painted caves of Europe.

  The cave, according to the evidence of radiocarbon dates, was occupied at two periods, first from 32,000 to 30,000 years ago, and then again from 27,000 to 25,000 years ago.357 Its walls are dominated by paintings of lions, mammoths and rhinoceroses, animals that were rarely hunted, according to archaeological evidence, as well as horses, reindeer, aurochsen, and an owl. The beauty and expressiveness of the paintings speak directly to contemporary observers. Yet despite the empathy they may arouse, the paintings’ meaning, and the intent of their makers, is simply unknown. The natural assumption is that only people like ourselves could create such appealing works of art. But it is also possible that these are works of a savage intelligence that saw the world with the same visual system and a profoundly different mind.

  Because of the cold climate that then prevailed, Europe and much of the Eurasian steppe were covered not in forest but in vast grasslands that supported abundant reindeer, woolly mammoths, bison and antelope. These animals provided ample subsistence for hunters, as well as valuable materials like hide, bone, ivory and antler.

  FIGURE 6.1. THE ROLLER COASTER OF CLIMATE CHANGE

  IN THE UPPER PALEOLITHIC.

  The Upper Paleolithic age in Europe was a time of sharp temperature changes, particularly during the Last Glacial Maximum, which lasted from about 20,000 to 15,000 years ago.

  FIGURE 6.2. THE FORCED EVACUATION OF EUROPE AND ASIA.

  During the Last Glacial Maximum northern and central Eurasia were covered with glaciers, bordered by steppe and tundra, and in both halves of the supercontinent the population would have been forced to migrate southward into warmer refuges.

  The Aurignacian era came to an end, for unknown reasons, and its culture was replaced by that of the Gravettian, also defined by a distinctive set of stone tools. The Gravettian, which lasted from 28,000 to 21,000 years ago, stretched east into Russia, with southern provinces in Italy and astride the French-Spanish border. Gravettian people focused more on hunting mammoth than reindeer. They produced the well-known Venus figurines, with their dwarf heads, ample breasts and steatopygous buttocks, strangely reminiscent of the adaptation found among the San and the Andaman islanders. The figurines, recovered from sites stretching from France to Russia, clearly had some widely recognized importance in the Gravettian culture and were perhaps associated with a fertility cult. A less well known achievement is the invention of the bow—the earliest evidence of bows and arrows first appears at the end of the Gravettian period. 124

  The Gravettian culture occurred during a period of considerable cold during which much of the northern European plain was unoccupied. The era ended as the Last Glacial Maximum descended on the world. Its glaciers smothered Britain, Scandinavia and other northern latitudes, sending their occupants retreating to refuge areas in Spain, Italy and the Ukraine. Nothing is known about the collision of peoples that may have been set in train as the people of the north migrated down into the southerners’ territory. But the worsening climate could have given an edge to the northerners who were adapted to the cold. The principal European culture during the post-Gravettian period is known as the Solutrean. It was centered in France and Spain and lasted from 21,000 to 16,500 years ago. Ibex, wild horse and red deer are the species whose bones are most common at Solutrean sites. The sites are more closely packed together, and some of the largest and thinnest stone tools look as if they were made for ceremonial rather than practical use. Archaeologists interpret these last two factors as a sign that people were living together in larger societies. This could have been a consequence of the fact that northwestern and central Europe had apparently been abandoned and the survivors were crowded into the southern refuges.

  The Last Glacial Maximum lasted for some five thousand years. Then, as quickly as the glaciers had returned, they began their final withdrawal, yielding back the rich plains of northern Eurasia for occupation by animals and those who hunted them. From one of the refuge areas, the Périgord region of southwestern France, people spread out across the region that is now France and Germany, creating the Magdalenian culture which existed from 18,000 to 11,000 years ago. The Magdalenian tool kit, designed for reindeer hunting, is lightweight and portable. People crafted tools of particular precision and delicacy, such as bone harpoons with a row of barbs on each side. The practice of cave art continued at the Magdalenian sites of Lascaux, dated to 17,000 years ago, Niaux and Altamira.

  Little is known about the lives of Upper Paleolithic hunter-gatherers or the reasons that led one culture to succeed another. For lack of contrary evidence, their social structure is generally assumed to have been egalitarian, without kings or leaders, as is that of contemporary hunter-gatherer societies.

  Archaeologists are skilled at making inferences from the few shards of stone or bones they have to work with, but such evidence can lead only so far. Rarely can they identify the people who made the artifacts they study. Geneticists have begun to supply a new dimension to the archaeology by supplying biological information to match with the archaeologists’ culture. Who were the Aurignacians or Gravettians? Amazingly, geneticists have been able to develop answers as to where they came from, and who their living descendants are.

  The most comprehensive study so far of Europe’s early population history has been carried out by Martin Richards of the University of Hudders field in Britain. With colleagues in Europe and Israel, Richards has used an ingenious technique called founder analysis to date the arrival of successive waves of immigrants into Europe from 45,000 years ago to recent times.

  Founder analysis depends on the idea that when people in region A send out colonists to region B, the colonists will start to clock up new mutations in their DNA that won’t exist in the parent population back home in region A. So if the new mutations can be identified and counted, their number will yield an estimate of how long the colonists have lived in their new home in region B.

  Richards has applied the founder analysis technique to mitochondrial DNA. As discussed above, mitochondrial DNA lineages have a distinctive geographical distribution because the mutations that initiate each branch of the genealogy occurred while people were moving into new territory across the world. The lineages denoted M and N were the only ones to come out of Africa and reach India. The daughter lineages of M and some of N populated all of the eastern Eurasian land mass; the rest of N populated western Eurasia.

  N gave rise to a daughter lineage R, and the descendants of R, daughter lineages known as J, H, V, T, K and U, moved to occupy the Near East and Europe. Almost all Europeans belong to one or another of these six lineages or to a seventh, X, who is a direct, non-R daughter of N; hence the title of an engaging book by the population geneticist Bryan Sykes called The Seven Daughters of Eve. U, the most prolific daughter, had several sublineages of which, confusingly, K is one, and the others are labeled U1 through U6.

  To reconstruct the population history of Europe, Richards and his colleagues started with the principal mitochondrial lineages in Europe, then looked for the present day descendants of their source populations in the Near East. They then compared regions of the mitochondrial DNA of the U5 cluster of lineages, say, in Europe with members of the U5
cluster in the Near East. After the two groups of U5 had parted ways, each would have continued to accumulate its own mutations. So it was easy to spot the new mutations in European U5—they were the ones that didn’t also appear in Near Eastern U5.

  Knowing the number of new mutations in European U5, and the general rate at which changes occur in mitochondrial DNA, the Richards team could then calculate how long U5 had been present in Europe. They performed the same exercise for the other main clusters of European lineages.125

  They found that just eleven clusters, containing some 40 individual lineages, accounted for three quarters of the present day European population. The most ancient, the U5 cluster, had a time-in-Europe date of 50,000 years, give or take 5,000 years each way. This fits well with the archaeological date of 45,000 years for a site in Bulgaria that marks the earliest known presence of modern humans in Europe and hence denotes the start of the Upper Paleolithic age. And it suggests that the Aurignacians, the first people to enter Europe, belonged to the U5 mitochondrial lineage.

  Richards could not tell how many people had entered Europe during this first entry of modern humans. But taking the number of lineages in the U5 cluster as a fraction of the whole, he calculated that about 7% of today’s Europeans are descended from these first arrivals.

  All but one of the other clusters arrived at various times in between, from 35,000 to 15,000 years ago. Altogether some 87% of Europeans are descended from people who arrived before the end of the Pleistocene ice age. Only 13% are descended from ancestors who came to Europe around 10,000 years ago, mostly in the form of the J cluster of mitochondrial lineages. These arrivistes would presumably represent the immigrants from the Near East who brought knowledge of agriculture into Europe and were the harbingers of the Neolithic age.

  A major factor that shaped the present population of Europe were the glaciers of the Last Glacial Maximum which drove people back into the southern refuges of the Iberian peninsula. Europe was then repopulated by people spreading northeastward from these refuges as the glaciers retreated after 15,000 years ago. 126 The lineage clusters V and H, which had entered Europe earlier, were prominent in the reexpansion. Some 45 to 50% of most European populations belong to this cluster, and 60% of Basques do, as might be expected if the Basque region of southwestern France and northeastern Spain was the source of the recolonization.

  The Richards team’s reconstruction of the population history of Europe brought to light an unexpected fact: that most Europeans are descended from the first settlers who arrived during the Upper Paleolithic era. Only a minority arrived during the Neolithic age. This is the reverse of expectation; archaeologists had assumed that the people who introduced farming to Europe in the Neolithic age overwhelmed the earlier inhabitants with their larger populations. The findings suggest that the people of the Upper Paleolithic did not die out; they switched from foraging to settlement and adopted the new farming techniques.

  Since men and women migrate together, studies of Y chromosome lineages should corroborate the conclusions drawn by the Richards group from mitochondrial DNA. To a large extent they do. A recent analysis by Ornella Semino of the University of Pavia and Peter Underhill of Stanford University has established that 95% of European men belong to just 10 lineages of the Y chromosome tree. 127 The researchers cannot find a Y chromosome lineage that matches up specifically with U5, the mitochondrial DNA cluster that signals the first arrivals in Europe 45,000 years ago. But they see evidence for lineages of men, all carrying a mutation known as M173, who arrived between 40,000 and 35,000 years ago and whom they consider the likely bearers of the Aurignacian culture.

  A second migration of Y chromosome owners arrived in Europe from the Near East some 20,000 to 25,000 years ago. The mutation that defines these lineages is known as M170. These men seem to have been the bearers of the Gravettian culture that succeeded the Aurignacian, Semino and her colleagues say.

  The work of the Richards and Semino teams lays the basis for what many hope will be a grand synthesis between genetics and archaeology. If the geneticists can firm up the dates of entry into Europe of the various mitochondrial DNA and Y chromosome lineages, archaeologists may be able to tie these population movements into the sequence of culturally distinct occupations they have defined for the Upper Paleolithic period. And if historical linguists should succeed in reconstructing a family tree of human languages, as discussed in chapter 10, it may even be possible to say what language was spoken by the people of these ancient lineages. Such a link can already be suggested in at least one instance: if people of the mitochondrial lineage J were indeed those who arrived 10,000 years ago bringing the agricultural techniques of the Neolithic, then they may have spoken the Indo-European tongue from which so many of today’s European languages are descended.

  The Upper Paleolithic in Eastern Asia

  The population history of East Asia cannot yet be written in the same detail as that of Europe. Although the two halves of the Eurasian continent developed separately, there have clearly been links between them. One lies with the men who brought the Aurignacian culture to Europe. Their branch of the Y chromosome genealogy, defined by mutation M173, is a brother to the M3 lineage that is found in some Siberian populations and many American Indians; the two lineages presumably originated from the same source, perhaps in India. Upper Paleolithic sites similar to those in Europe and dating from 40,000 to 25,000 years ago are found across Siberia and around Lake Baikal.

  The Siberians probably lived in much the same way as their European cousins, hunting the large herds of hoofed species that grazed the Eurasian steppe land. Like the Europeans, their millennia of foraging life were disrupted by the rigors of the Last Glacial Maximum.

  Siberia may be something of a backwater in the contemporary world, but in the days of the Last Glacial Maximum its inhabitants accomplished two historic achievements. One was the domestication of the dog, the first species to be drawn into human service. The second, of lesser immediate importance, was the discovery and inhabitation of North and South America.

  Dogs have lost their working status in most modern societies. But they spread like wildfire in the prehistoric world. They could be trained to help hunt other animals. They made good bed warmers during cold Siberian nights. They would have been a self-transporting source of meat in case of emergency. But probably none of these is the reason that dogs spread so quickly from one end of Eurasia to another.

  In antithesis to the Sherlock Holmes tale that hinges on the dog that didn’t bark in the night, a crucial problem of dog origins is why they do. Wolves almost never bark. Barking was probably a character that was selected by the dog’s first domesticators. That suggests they weren’t much interested in using dogs for hunting, where a bark is no asset. But if the first use of dogs was in sentry duty, to warn of strangers, intruders, and attackers creeping in for a dawn raid, then a fierce and furious bark would have made a dog an invaluable defense system.

  Dogs may thus have played an important role in early human history, especially if they helped make possible the transition from foraging to settled societies. People who settled down in one place would have been under constant risk of attack. It is perhaps significant that the first settlements occurred at the same time as dogs were domesticated.

  Dogs are wolves that have been genetically adapted to live with people. In biological relationships between two species, it is common for each to evolve in response to the other. Have people adapted so as to live with dogs? Communities that learned to make use of dogs as sentries may have gained a substantial advantage, especially in conditions of constant warfare, over those whose members did not learn how to establish rapport with dogs.

  Another way in which dogs may have altered early human societies is by disrupting the foragers’ taboo against private ownership of property. 128 Dogs don’t belong to a community: they attach themselves to a master. Possibly they forced themselves into human societies as the first major item of ownership, paving the way for the
concept of the property-based sedentary societies that were to follow.

  Robert Wayne of the University of California, Los Angeles, has studied the mitochondrial DNA of dogs, wolves, coyotes and jackals, and shown that, as long supposed, dogs are almost certainly descended from wolves alone, even though all these canid species can interbreed.129 But his estimated date for the origin of dogs as a separate population—135,000 years ago—seemed far too early to archaeologists. The oldest dog bone found so far, in Germany, is 14,000 years old, with other dogs 12,000 years old known from Israel.

  A much more plausible date emerged from a subsequent survey by one of Wayne’s colleagues, Peter Savolainen, now at the Royal Institute of Technology in Stockholm. Savolainen collected mitochondrial DNA, asking dog fanciers from all over the world to send him hairs from their breeds. With samples from 654 dogs from Europe, Asia, Africa and America, and 38 Old World wolves, he was able to pinpoint the likeliest region where dogs were domesticated as being somewhere in East Asia, even though the earliest known dog remains occur in the West. This is because there is more variability in the DNA of East Asian dogs than anywhere else in the world, and a rule of thumb in genetics is that the region of a species’ greatest diversity is its place of origin.

 

‹ Prev