by Eric Evans
Shared Kernel
When functional integration is limited, the overhead of CONTINUOUS INTEGRATION may be deemed too high. This may especially be true when the teams do not have the skill or the political organization to maintain continuous integration, or when a single team is simply too big and unwieldy. So separate BOUNDED CONTEXTS might be defined and multiple teams formed.
Uncoordinated teams working on closely related applications can go racing forward for a while, but what they produce may not fit together. They can end up spending more on translation layers and retrofitting than they would have on CONTINUOUS INTEGRATION in the first place, meanwhile duplicating effort and losing the benefits of a common UBIQUITOUS LANGUAGE.
On many projects I’ve seen the infrastructure layer shared among teams that worked largely independently. An analogy to this can work well within the domain as well. It may be too much overhead to fully synchronize the entire model and code base, but a carefully selected subset can provide much of the benefit for less cost.
Therefore:
Designate some subset of the domain model that the two teams agree to share. Of course this includes, along with this subset of the model, the subset of code or of the database design associated with that part of the model. This explicitly shared stuff has special status, and shouldn’t be changed without consultation with the other team.
Integrate a functional system frequently, but somewhat less often than the pace of CONTINUOUS INTEGRATION within the teams. At these integrations, run the tests of both teams.
It is a careful balance. The SHARED KERNEL cannot be changed as freely as other parts of the design. Decisions involve consultation with another team. Automated test suites must be integrated because all tests of both teams must pass when changes are made. Usually, teams make changes on separate copies of the KERNEL, integrating with the other team at intervals. (For example, on a team that CONTINUOUSLY INTEGRATES daily or better, the KERNEL merger might be weekly.) Regardless of when code integration is scheduled, the sooner both teams talk about the changes, the better.
The SHARED KERNEL is often the CORE DOMAIN, some set of GENERIC SUBDOMAINS, or both (see Chapter 15), but it can be any part of the model that is needed by both teams. The goal is to reduce duplication (but not to eliminate it, as would be the case if there were just one BOUNDED CONTEXT) and make integration between the two subsystems relatively easy.
Customer/Supplier Development Teams
Often one subsystem essentially feeds another; the “downstream” component performs analysis or other functions that feed back very little into the “upstream” component, and all dependencies go one way. The two subsystems commonly serve very different user communities, who do different jobs, where different models may be useful. The tool set may also be different, so that program code cannot be shared.
Upstream and downstream subsystems separate naturally into two BOUNDED CONTEXTS. This is especially true when the two components require different skills or employ a different tool set for implementation. Translation is easier for having to operate in one direction only. But problems can emerge, depending on the political relationship of the two teams.
The freewheeling development of the upstream team can be cramped if the downstream team has veto power over changes, or if procedures for requesting changes are too cumbersome. The upstream team may even be inhibited, worried about breaking the downstream system. Meanwhile, the downstream team can be helpless, at the mercy of upstream priorities.
Downstream needs things from upstream, but upstream is not responsible for downstream deliverables. It takes a lot of extra effort to anticipate what will affect the other team, and human nature being what it is, and time pressures being what they are, well . . . . It makes everyone’s life easier to formalize the relationship between the teams. The process can be organized to balance the needs of the two user communities and schedule work on features needed downstream.
On an Extreme Programming project, there already is a mechanism in place for doing just that: the iteration planning process. All we have to do is define the relationship between the two teams in terms of the planning process. Representatives of the downstream team can function much like the user representatives, joining them in planning sessions, discussing directly with their fellow “customers” the trade-offs for the tasks they want. The result is an iteration plan for the supplier team that includes tasks the downstream team needs most or defers tasks by agreement, so there is no expectation of delivery.
If a process other than XP is used, whatever analogous method serves to balance the concerns of different users can be expanded to include the downstream application’s needs.
Therefore:
Establish a clear customer/supplier relationship between the two teams. In planning sessions, make the downstream team play the customer role to the upstream team. Negotiate and budget tasks for downstream requirements so that everyone understands the commitment and schedule.
Jointly develop automated acceptance tests that will validate the interface expected. Add these tests to the upstream team’s test suite, to be run as part of its continuous integration. This testing will free the upstream team to make changes without fear of side effects downstream.
During the iteration, the downstream team members need to be available to the upstream developers just as conventional customers are, to answer questions and help resolve problems.
Automating the acceptance tests is a vital part of this customer relationship. Even on the most cooperative project, although the customer can identify and communicate its dependencies, and the supplier can diligently try to communicate changes, without tests, surprises will happen. They will disrupt the downstream team’s work and force the upstream team to take on unscheduled, emergency fixes. Instead, have the customer team, in collaboration with the supplier team, develop automated acceptance tests that will validate the interface it expects. The upstream team will run these tests as part of its standard test suite. Any change to these tests calls for communication with the other team, because changing the tests implies changing the interface.
Customer/supplier relationships also emerge between projects in separate companies, in situations where a single customer is very important to the business of the supplier. The tail can wag the dog: an influential customer can make demands that are important to the upstream project’s success, but those demands can also be disruptive to the upstream project’s development. Both parties benefit from the formalization of the process of responding to requirements, because the cost/benefit trade-offs are even harder to see in external relationships than they are in the internal IT situation.
There are two crucial elements to this pattern.
1. The relationship must be that of customer and supplier, with the implication that the customer’s needs are paramount. Because the downstream team is not the only customer, the different customers’ demands have to be balanced in negotiation—but they remain priorities. This situation is in contrast to the poor-cousin relationship that often emerges, in which the downstream team has to come begging to the upstream team for its needs.
2. There must be an automated test suite that allows the upstream team to change its code without fear of breaking the downstream, and lets the downstream team concentrate on its own work without constantly monitoring the upstream team.
In a relay race, the forward runner can’t be looking backward all the time, checking. He or she has to be able to trust the baton carrier to make the handoff precisely, or else the team will be hopelessly slowed down.
Example: Yield Analysis Versus Booking
Back to our trusty shipping example. A highly specialized team has been set up to analyze all the bookings that flow through the firm, to see how to maximize income. Team members might find that ships have empty space and might recommend more overbooking. They might find that the ships are filling up with bulk freight early, forcing the company to turn away more lucrative specialty cargoes. In that case they might
recommend reserving space for these types of cargo or raising prices on the bulk freight.
To do this analysis, they use their own complex models. For implementation, they use a data warehouse with tools for building analytical models. And they need lots of information from the Booking application.
From the start, it is clear that these are two BOUNDED CONTEXTS, because they use different implementation tools and, most important, different domain models. What should the relationship between them be?
A SHARED KERNEL might seem logical, because yield analysis is interested in a subset of the Booking’s model, and their own model has some overlapping concepts of cargos, prices, and so on. But SHARED KERNEL is difficult in a case where different implementation technologies are being used. Besides, the modeling needs of the yield analysis team are quite specialized, and they continuously play with their models and try alternative ones. They may well be better off translating what they need from the Booking CONTEXT into their own. (On the other hand, if they can use a SHARED KERNEL, their translation burden will be much lighter. They will still have to reimplement the model and translate the data to the new implementation, but if the model is the same, the transfer should be simple.)
The Booking application has no dependency on the yield analysis, because there is no intention of automatically adjusting policies. Human specialists will make the decisions and convey them to the needed people and systems. So we have an upstream/downstream relationship. What downstream needs is this:
1. Some data not needed by any booking operation
2. Some stability in database schema (or at least reliable notification of change) or an export utility
Fortunately, the project manager of the Booking application development team is motivated to help the yield analysis team. This could have been a problem, because the operations department that actually does day-to-day booking reports to a different vice president than the people who actually do yield analysis. But the upper management cares deeply about yield management and, having seen past cooperation problems between the two departments, structured the software development project so that the project managers of both teams report to the same person.
Therefore, all the requirements are in place to apply CUSTOMER/SUPPLIER DEVELOPMENT TEAMS.
I’ve seen this scenario evolve in multiple places, where analysis software developers and operations software developers had a customer/supplier relationship. When the upstream team members thought of their role as serving a customer, things worked out pretty well. It was almost always organized informally, and in each case it worked out about as well as the personal relationship of the two project managers.
On one XP project, I saw this relationship formalized in the sense that, for each iteration, representatives of the downstream team played the “planning game” in the role of customers, huddling with the more conventional customer representatives (of application functionality) to negotiate which tasks made it into the iteration plan. This project was at a small company, and so the nearest shared boss was not far up the chain. It worked very well.
CUSTOMER/SUPPLIER TEAMS are more likely to succeed if the two teams work under the same management, so that ultimately they do share goals, or where they are in different companies that actually have those roles. When there is nothing to motivate the upstream team, the situation is very different. . . .
Conformist
When two teams with an upstream/downstream relationship are not effectively being directed from the same source, a cooperative pattern such as CUSTOMER/SUPPLIER TEAMS is not going to work. Naively trying to apply it will get the downstream team into trouble. This can be the case in a large company in which the two teams are far apart in the management hierarchy or where the shared supervisor is indifferent to the relationship of the two teams. It also arises between teams in different companies when the customer’s business is not individually important to the supplier. Perhaps the supplier has many small customers, or perhaps the supplier is changing market direction and no longer values the old customers. The supplier may just be poorly run. It may have gone out of business. Whatever the reason, the reality is that the downstream is on its own.
When two development teams have an upstream/downstream relationship in which the upstream has no motivation to provide for the downstream team’s needs, the downstream team is helpless. Altruism may motivate upstream developers to make promises, but they are unlikely to be fulfilled. Belief in those good intentions leads the downstream team to make plans based on features that will never be available. The downstream project will be delayed until the team ultimately learns to live with what it is given. An interface tailored to the needs of the downstream team is not in the cards.
In this situation, there are three possible paths. One is to abandon use of the upstream altogether. This option should be evaluated realistically, making no assumptions that the upstream will accommodate downstream needs. Sometimes we overestimate the value or underestimate the cost of such a dependency. If the downstream team decides to cut the strings, they are going their SEPARATE WAYS (see the pattern description later in this chapter).
Sometimes the value of using the upstream software is so great that the dependency has to be maintained (or a political decision has been made that the team cannot change). In this case, two paths remain open; the choice depends on the quality and style of the upstream design. If the design is very difficult to work with, perhaps for lack of encapsulation, awkward abstractions, or modeling in a paradigm the team cannot use, then the downstream team will still need to develop its own model. They will have to take full responsibility for a translation layer that is likely to be complex. (See ANTICORRUPTION LAYER, later in this chapter.).
* * *
Following Isn’t Always Bad
When using an off-the-shelf component that has a large interface, you should typically CONFORM to the model implicit in that component. Because the component and the application are clearly different BOUNDED CONTEXTS, based on team organization and control, adapters may be needed for minor format changes, but the model should be equivalent. Otherwise, you should question the value of having the component. If it is good enough to give you value, there is probably knowledge crunched into its design. Within its narrow sphere, it may well be much more advanced than your own understanding. Your model presumably extends beyond the scope of this component, and your own concepts will evolve for those other parts. But where they connect, your model is a CONFORMIST, following the lead of the component’s model. In effect, you could be dragged into a better design.
When your interface with a component is small, sharing a unified model is less essential, and translation is a viable option. But when the interface is large and integration is more significant, it usually makes sense to follow the leader.
* * *
On the other hand, if the quality is not so bad, and the style is reasonably compatible, then it may be best to give up on an independent model altogether. This is the circumstance that calls for a CONFORMIST.
Therefore:
Eliminate the complexity of translation between BOUNDED CONTEXTS by slavishly adhering to the model of the upstream team. Although this cramps the style of the downstream designers and probably does not yield the ideal model for the application, choosing CONFORMITY enormously simplifies integration. Also, you will share a UBIQUITOUS LANGUAGE with your supplier team. The supplier is in the driver’s seat, so it is good to make communication easy for them. Altruism may be sufficient to get them to share information with you.
This decision deepens your dependency on the upstream and limits your application to the capabilities of the upstream model—plus purely additive enhancements. It is very unappealing emotionally, which is why we choose it less often than we probably should.
If these trade-offs are not acceptable, but the upstream dependency is indispensable, the second option still remains: Insulate yourself as much as possible by creating an ANTICORRUPTION LAYER, an aggressive approach t
o implementing a translation map that will be discussed later.
CONFORMIST resembles SHARED KERNEL in that both have an overlapping area where the model is the same, areas where your model has been extended by addition, and areas where the other model does not affect you. The difference between the patterns is in the decision-making and development processes. Where the SHARED KERNEL is a collaboration between two teams that coordinate tightly, CONFORMIST deals with integration with a team that is not interested in collaboration.
We’ve been proceeding down a spectrum of cooperation in the integration between BOUNDED CONTEXTS, from highly cooperative SHARED KERNELS or CUSTOMER/SUPPLIER DEVELOPER TEAMS to the one-sidedness of the CONFORMIST. Now we’ll take the final step to an even more pessimistic view of the relationship, assuming neither cooperation nor a usable design on the other side. . . .
Anticorruption Layer
New systems almost always have to be integrated with legacy or other systems, which have their own models. Translation layers can be simple, even elegant, when bridging well-designed BOUNDED CONTEXTS with cooperative teams. But when the other side of the boundary starts to leak through, the translation layer may take on a more defensive tone.
When a new system is being built that must have a large interface with another, the difficulty of relating the two models can eventually overwhelm the intent of the new model altogether, causing it to be modified to resemble the other system’s model, in an ad hoc fashion. The models of legacy systems are usually weak, and even the exception that is well developed may not fit the needs of the current project. Yet there may be a lot of value in the integration, and sometimes it is an absolute requirement.