by Hal Clement
Cray reported that the assembly, as nearly as he could tell, should work.
“Then I suggest that you and anyone you need to help you remain here and start it in a few moments, while the rest of us go outside to observe results. We’ll keep well clear of the stern, so don’t worry about us,” said Grant. “We’re on the night side of the asteroid now, and, as I remember, the Mizar was outward and counter-clockwise of this asteroid’s position twenty-four hours ago—by heaven, I’ve just realized that all this has occurred in less than twenty, hours. She should be able to sight the flare at twenty million miles, if this tube carries half the pep that one of ours would.”
Cray nodded. “I can start it alone,” he said. “The rest of you go on out. I’ll give you a couple of minutes, then turn it on for just a moment. I’ll give you time to send someone in if anything is wrong.”
Grant nodded approval, and led the other five men along the main corridor and out the air lock. They leaped to a position perhaps a hundred and fifty yards to one side of the ship, and waited.
The tube in question was one of the lowest in the bank of those parallel to the ship’s longitudinal axis. For several moments after the men had reached their position it remained lifeless; then a silent, barely visible ghost of flame jetted from its lip. This changed to a track of dazzling incandescence at the point where it first contacted the rock of the asteroid; and the watchers automatically snapped the glare shields into place on their helmets. These were all in place before anyone realized that the tube was still firing, cutting a glowing canyon into the granite and hurling a cloud of boiling silica into space. Grant stared for a moment, leaped for the air lock, and disappeared inside. As he entered the control room from the front, Cray burst in from the opposite end, making fully as good time as the captain. He didn’t even pause, but called out as he came:
“She wouldn’t cut off, and the fuel flow is increasing. I can’t stop it. Get out before the breech gives—I didn’t take time to close the engine-room door!”
Grant was in midair when the engineer spoke, but he grasped a stanchion that supported the catwalk, swung around it like a comet, and reversed his direction of flight before the other man caught up to him. They burst out of the air lock at practically the same instant.
By the time they reached the others, the tube fields had gone far out of balance. The lips of the jet tube were glowing blue-white and vanishing as the stream caught them; and the process accelerated as the men watched. The bank of stern tubes glowed brightly, began to drip, and boiled rapidly away; the walls of the engine room radiated a bright red, then yellow, and suddenly slumped inward. That was the last straw for the tortured disintegrator; its own supremely resistant substance yielded to the lack of external cooling, and the device ceased to exist. The wreckage of the alien ship, glowing red now for nearly its entire length, gradually cooled as the source of energy ceased generating; but it would have taken supernatural intervention to reconstruct anything useful from the rubbish which had been its intricate mechanism. The men, who had seen the same thing happen to their own ship not twenty hours before, did not even try to do so.
The abruptness with which the accident had occurred left the men stunned. Not a word was spoken, while the incandescence faded slowly from the hull. There was nothing to say. They were two hundred million miles from Earth, the asteroid would be eighteen months in reaching its nearest point to the orbit of Mars—and Mars would not be there at the time. A search party might eventually find them, since the asteroid was charted and would be known to have been in their neighborhood at the time of their disappearance. That would do them little good.
Rocket jets of the ion type are not easily visible unless matter is in the way—matter either gaseous or solid. Since the planetoid was airless and the Mizar did not actually land, not even the usually alert Preble saw her approach. The first inkling of her presence was the voice of her commander, echoing through the earphones of the seven castaways.
“Hello, down there. What’s been going on? We saw a flare about twenty hours ago on this body that looked as though an atomic had misbehaved, and headed this way. We circled the asteroid for an hour or so, and finally did sight your ship—just as she did go up. Will you please tell us what the other flare could have been? Or didn’t you see it?”
It was the last question that proved too much for the men. They were still laughing hysterically when the Mizar settled beside the wreck and took them aboard. Cray alone was silent and bitter.
“In less than a day,” he said to his colleague on the rescue ship, “I wrecked two ships—and I haven’t the faintest idea how I wrecked either one of them. As a technician, I’d be a better ground-car mechanic. That second ship was just lying there waiting to teach me more about shop technique than I’d have learned in the rest of my life; and some little technical slip ruined it all.”
But whose was the error in technique?
THE END.
TROJAN FALL
He was able to run one of those perfected, foolproof spaceship’s, able to navigate a little—but like most crooks believed he knew the whole story when he’d heard the first chapter!
A galaxy should be a perfect hiding place. A hundred billion suns and a hundred thousand light-years form an appallingly large haystack in which to seek any such sub-microscopic needle as a man, or even a planet. A photograph of the Milky Way, or, better, a projection of such a photograph, can give some idea of the sense of confusion which is experienced by anyone faced with the task of combing such a maze.
That was La Roque’s first impression, and his views of the galaxy had not been confined to photographs. Admittedly, he was used to interplanetary rather than interstellar flight; but it is almost as easy to get lost inside solar systems as between them. So, when it became a matter of expedience for him to disappear from sight for a time, he decided quite abruptly that Sol’s little family was too crowded.
Getting a ship, even legally, was not too difficult; flight between Sol and the nearer stars was fairly common, and only the usual customs restrictions applied to private journeys. La Roque intended that his journey should be more private than usual.
He purchased a craft; the event which made departure so urgent had left him with plenty of funds. She was about as small as a second-order flyer could be: a metal egg about seventy feet long and thirty in diameter at the widest point. She had the required two second-order converters, either capable of holding the ship and six hundred tons of additional mass in the necessary condition for intersellar flight above light-speed.
Her actual capacity for freight was nowhere near that figure, of course. The converters consumed mercury, but could be modified to take any reasonably dense metal of low melting point.
La Roque preferred the concealment of crowds, and for that reason chose to make his departure from the ever-busy Allahabad port. It was a little before midnight, on a July evening, that a pilot beam guided his ship beyond the Earth’s atmosphere; by 1 a.m. he had switched free, pointed the blunt nose of his ship at the center of the Milk Dipper’s bowl, checked his personal equalizer, and shunted into second-order flight. The universe around him remained visible after a fashion, but aberration altered its appearance vastly. Every star swung forward; and at four hundred times the speed of light, they were all contained in a circular area, centered on his line of flight and a little over eight minutes of arc in radius. Sol was dead ahead, apparently, and prevented any possible view of his goal which might have been furnished by a telescope.
La Roque was not a navigator, and knew no more astronomy than the average educated person of his time. Although the beacon stars Rigel, Deneb, and Canopus would all be visible in any part of the galaxy his ship was likely to reach, they were useless to him. His only hope of eventual return to the Earth lay in the device which, every hour, automatically cut the second-order fields for a split second and simultaneously photographed the heavens dead astern. Even that was likely to be useless if he crossed a region of low star densi
ty, where there would be no nearby, recognizable objects on the films to guide his return. He had had sense enough to realize this, and consequently had headed in the general direction of the galactic center. He was reasonably certain of finding a habitable planet; the star that lacked worlds was the exception rather than the rule. Earth-type worlds were rarer, but frequent enough to have forced the enactment of several regulations against unrestricted colonization.
Having made the first step in his getaway, he settled down to figuring out the probable line of action of the law. It would, with luck, be a full month before his means of escape would be deduced, for it was known that he was not trained in cosmic navigation, and his ship would not be missed until sufficient time had elapsed for it to make a round trip to Tau Ceti, which he had indicated at Allahabad as his destination. It would take another day or two to compute his actual direction of departure, from the recording at the observatories which had presumably picked up his “wake.” From then on, time would be short; any League cruiser of reasonable size could cover in two or three days any distance he could hope to put behind him in that month. It is an unescapable fact that the speed obtainable from a second-order unit is directly dependent on its size.
Therefore, it was essential that a hiding place be found. A planet, where the ship could be buried or otherwise concealed, would present an impossible search problem to a hundred League ships—if there were no inhabitants to hold inconvenient memories of his landing. He might find such a world by random search, but the distance he could travel in his month of grace was limited; and, he realized, very few suns lay within that distance. He got out a set of heliocentric charts and began his search on paper.
There is no excuse for him. His destination should have been planned before he left the ground—planned not only as to planet, but to location on the planet. He had always planned his “deals” with meticulous care; and had sneered at less careful colleagues whose failure to do so had resulted in more or less lengthy retirement to League reform institutions. It is impossible to say why he didn’t see that the same principle might apply to interstellar flight. But he didn’t.
The reference volume that accompanied the charts was most helpful. Stellar systems were listed by right ascension, declination, and distance; so that he merely had to find the appropriate pages to find in a single group all the systems near his line of flight.
There were twelve suns, in seven systems, lying with a light-year of his course, within the distance measured by a month’s flight. Such a number was most surprising; chance alone would not insist on even one star within a cylinder of space two light-years in diameter and thirty-five long. Most of them, of course, were “dead” stars, detectable at only the closest range. Six of them had planetary systems; but the planets, without exception, possessed surface temperatures below the freezing point of mercury.
That was unfortunate. To remain alive on any of these worlds would demand that he stay in the ship, and use power, for heat and light. Even such slight radiation as that would cause meant a virtual certainty of detection by even a cursory sweep of the planet on the part of a League cruiser. He had to find a place where the ship would remain at least habitably warm without aid from its own converters. He could do without light, he thought.
The problem would not have bothered a pilot of even moderate experience, of course. The ship could easily be set in a circular orbit of any desired radius about one of the stars. Unfortunately, there is a definite relation between the mass of a star, the radius of the desired orbit, and the amount of initial tangential velocity required: and this simple relation was unknown to La Roque. Trial and error would be very unsatisfactory: the error might be unnoticeably small to start with, and become large enough to require correction when searchers were around. A worried frown began to add creases above La Roque’s black brows as the little flyer raced on.
The spot of light in the front vision plate grew paler as Sol, who provided most of its radiance, faded astern. Within a day, he was merely a bright star; in a week, dozens of others outshone him whenever La Roque cut the drive fields. Space, the runaway began to realize, was a terrifying lonely environment. Earth was beginning, in his memory, to assume a less forbidding aspect.
Two days out, he passed the first of the seven systems. It was not visible, at half a light-year, even when the fields were off; the chart reference described it as a binary, both stars cool enough to have clouds of solid and liquid particles in their atmospheres, and neither emitting any visible radiation to speak of. The relative orbit was of almost cometary eccentricity, with a period of about seventy years. The suns had passed periastron about a dozen years before, without anyone’s being greatly concerned.
It was a dry collection of data, but it jogged La Roque’s mind into recalling something. He had been picturing the result of an error in establishing an orbit, as being a spiral drop into the star he had chosen. Now he recalled that he would merely find himself in a slightly eccentric, rather than a circular, orbit; and if the eccentricity were not great enough to bring his periastron point actually within the star’s atmosphere, it would be perfectly stable.
The idea attracted him for a moment; even he could set up a passable concealment orbit. The possibility of being alternately too warm and too cold was unpleasant, but not forbidding. The system he was passing would not do, of course; he took it for granted that the perturbations produced by the companion star would nullify his attempts. However, four single suns were among those he had looked up along his course, and were within easy reach.
It remained to choose one of the four. Any reasonable and normal person would have without hesitation laid a course for the nearest; La Roque, under the elemental motivation that sent an incognito Hitler to Borneo rather than Switzerland, chose the farthest. Perhaps his gambling spirit had something to do with the choice; for there was actually some doubt that he would reach the star before a League cruiser would come nosing along his wake into detection range.
From where he was, the runaway could not lay a direct course for his chosen hideout. His knowledge of solid geometry and trigonometry was so small that all he could do was to continue on his present course until the proper heliocentric distance was attained, then stop, put Sol exactly on his beam, hold it there while he turned in the proper direction, and again run in second-order flight for a certain length of time—dead reckoning pure and very simple. By thus reducing his goal position to a known plane—or near plane; actually the surface of a sphere centered on Sol—he could get the course of his second leg by simply measuring, on a plane chart, the angle whose vertex was the point in the sky toward which he had been driving, and whose sides were determined, respectively, by some beacon star such as Rigel or Deneb, and the star of his destination. He dragged out a heliocentric chart and protractor, and set to work.
Time crawled on. The nearer stars, on the trail photographs, drifted sluggishly toward Sol. La Roque found a photometer, and managed to obtain with its aid a check on his distance from the Solar system. He spent much of his time sleeping. There was nothing to read except the charts, astrographical and planetographical references, and the numbers on the currency leaves whose gathering had necessitated his departure from Earth. The latter kept up his morale for a while.
Second-order pilotage is not difficult; it depends chiefly on proper aiming of the ship before cutting in of the converters. There is practically no tendency to drift from the original heading; in fact, it is impossible to turn without cutting the fields and re-aligning the vessel’s axis. Actually, the ship will follow the arc of a circle whose radius depends to some extent on the power of the generators, but in any case is so enormous that a “local” interstellar flight may be considered rectilinear. La Roque’s intended flight path was so short that his ignorance of short-order field technology made no difference. An experienced navigator, planning a flight across the galaxy, or to one of the exterior systems, would have to forecast and allow for the “drift” caused by generators of any giv
en make and power.
One by one, the star systems La Roque had rejected dropped behind. Each time he fought the temptation to turn aside and seek refuge. Days turned into weeks, three of them, from the time he had chosen his destination. By the most generous estimate, his margin of clearance from the law was growing narrow, when he cut the fields at—according to his reckoning—twenty-eight point seven seven four seven fight-years from the Solar System.
He snapped on plate after plate, looking around in every direction. A fifth-magnitude star on the cross wires of the rear plate was, of course, Sol. He looked for Deneb, but Cygnus was too badly distorted by a parallactic variation of nine parsecs to permit him to identify its alpha star with certainty. Orion was recognizable, since he had been moving more or less directly away from it and all its principal stars were extremely distant; so he decided to use Rigel to control his direction.
He zeroed the cross wires of one of the side plates and, using the gryos, swung the ship until Sol was centered on that plate. Rigel was, conveniently, visible on the same plate; so he snapped a switch which projected a protractor onto it, and swung the ship again until Rigel was on the proper—according to his measures—radius. Using the plate’s highest power, he placed the two stars to four decimals of accuracy, released the gyro clutches, and cut in the second-order fields before friction at the gyro bearings could throw off his heading.
His arithmetic said he had eight hours and thirty minutes of flight to his destination. Experience would have told him that his chances of stopping within detection range of his goal were less than one in a hundred thousand; as it was, the chief worry that actually disturbed him was whether or not there was risk of collision. Not too surprising! In dead reckoning, the novice navigator makes a tiny point and says, “Here we are.”