Still, our list of triumphs lacks many wild plants that, despite their value as food, we never succeeded in domesticating. Notable among these failures of ours are oak trees, whose acorns were a staple food of Native Americans in California and the eastern United States as well as a fallback food for European peasants in famine times of crop failure. Acorns are nutritionally valuable, being rich in starch and oil. Like many otherwise edible wild foods, most acorns do contain bitter tannins, but acorn lovers learned to deal with tannins in the same way that they dealt with bitter chemicals in almonds and other wild plants: either by grinding and leaching the acorns to remove the tannins, or by harvesting acorns from the occasional mutant individual oak tree low in tannins.
Why have we failed to domesticate such a prized food source as acorns? Why did we take so long to domesticate strawberries and raspberries? What is it about those plants that kept their domestication beyond the reach of ancient farmers capable of mastering such difficult techniques as grafting?
It turns out that oak trees have three strikes against them. First, their slow growth would exhaust the patience of most farmers. Sown wheat yields a crop within a few months; a planted almond grows into a nut-bearing tree in three or four years; but a planted acorn may not become productive for a decade or more. Second, oak trees evolved to make nuts of a size and taste suitable for squirrels, which we’ve all seen burying, digging up, and eating acorns. Oaks grow from the occasional acorn that a squirrel forgets to dig up. With billions of squirrels each spreading hundreds of acorns every year to virtually any spot suitable for oak trees to grow, we humans didn’t stand a chance of selecting oaks for the acorns that we wanted. Those same problems of slow growth and fast squirrels probably also explain why beech and hickory trees, heavily exploited as wild trees for their nuts by Europeans and Native Americans, respectively, were also not domesticated.
Finally, perhaps the most important difference between almonds and acorns is that bitterness is controlled by a single dominant gene in almonds but appears to be controlled by many genes in oaks. If ancient farmers planted almonds or acorns from the occasional nonbitter mutant tree, the laws of genetics dictate that half of the nuts from the resulting tree growing up would also be nonbitter in the case of almonds, but almost all would still be bitter in the case of oaks. That alone would kill the enthusiasm of any would-be acorn farmer who had defeated the squirrels and remained patient.
As for strawberries and raspberries, we had similar trouble competing with thrushes and other berry-loving birds. Yes, the Romans did tend wild strawberries in their gardens. But with billions of European thrushes defecating wild strawberry seeds in every possible place (including Roman gardens), strawberries remained the little berries that thrushes wanted, not the big berries that humans wanted. Only with the recent development of protective nets and greenhouses were we finally able to defeat the thrushes, and to redesign strawberries and raspberries according to our own standards.
WE’VE THUS SEEN that the difference between gigantic supermarket strawberries and tiny wild ones is just one example of the various features distinguishing cultivated plants from their wild ancestors. Those differences arose initially from natural variation among the wild plants themselves. Some of it, such as the variation in berry size or in nut bitterness, would have been readily noticed by ancient farmers. Other variation, such as that in seed dispersal mechanisms or seed dormancy, would have gone unrecognized by humans before the rise of modern botany. But whether or not the selection of wild edible plants by ancient hikers relied on conscious or unconscious criteria, the resulting evolution of wild plants into crops was at first an unconscious process. It followed inevitably from our selecting among wild plant individuals, and from competition among plant individuals in gardens favoring individuals different from those favored in the wild.
That’s why Darwin, in his great book On the Origin of Species, didn’t start with an account of natural selection. His first chapter is instead a lengthy account of how our domesticated plants and animals arose through artificial selection by humans. Rather than discussing the Galápagos Island birds that we usually associate with him, Darwin began by discussing—how farmers develop varieties of gooseberries! He wrote, “I have seen great surprise expressed in horticultural works at the wonderful skill of gardeners, in having produced such splendid results from such poor materials; but the art has been simple, and as far as the final result is concerned, has been followed almost unconsciously. It has consisted in always cultivating the best-known variety, sowing its seeds, and, when a slightly better variety chanced to appear, selecting it, and so onwards.” Those principles of crop development by artificial selection still serve as our most understandable model of the origin of species by natural selection.
CHAPTER 8
APPLES OR INDIANS
WE HAVE JUST SEEN HOW PEOPLES OF SOME REGIONS began to cultivate wild plant species, a step with momentous unforeseen consequences for their lifestyle and their descendants’ place in history. Let us now return to our questions: Why did agriculture never arise independently in some fertile and highly suitable areas, such as California, Europe, temperate Australia, and subequatorial Africa? Why, among the areas where agriculture did arise independently, did it develop much earlier in some than in others?
Two contrasting explanations suggest themselves: problems with the local people, or problems with the locally available wild plants. On the one hand, perhaps almost any well-watered temperate or tropical area of the globe offers enough species of wild plants suitable for domestication. In that case, the explanation for agriculture’s failure to develop in some of those areas would lie with cultural characteristics of their peoples. On the other hand, perhaps at least some humans in any large area of the globe would have been receptive to the experimentation that led to domestication. Only the lack of suitable wild plants might then explain why food production did not evolve in some areas.
As we shall see in the next chapter, the corresponding problem for domestication of big wild mammals proves easier to solve, because there are many fewer species of them than of plants. The world holds only about 148 species of large wild mammalian terrestrial herbivores or omnivores, the large mammals that could be considered candidates for domestication. Only a modest number of factors determines whether a mammal is suitable for domestication. It’s thus straightforward to review a region’s big mammals and to test whether the lack of mammal domestication in some regions was due to the unavailability of suitable wild species, rather than to local peoples.
That approach would be much more difficult to apply to plants because of the sheer number—200,000—of species of wild flowering plants, the plants that dominate vegetation on the land and that have furnished almost all of our crops. We can’t possibly hope to examine all the wild plant species of even a circumscribed area like California, and to assess how many of them would have been domesticable. But we shall now see how to get around that problem.
WHEN ONE HEARS that there are so many species of flowering plants, one’s first reaction might be as follows: surely, with all those wild plant species on Earth, any area with a sufficiently benign climate must have had more than enough species to provide plenty of candidates for crop development.
But then reflect that the vast majority of wild plants are unsuitable for obvious reasons: they are woody, they produce no edible fruit, and their leaves and roots are also inedible. Of the 200,000 wild plant species, only a few thousand are eaten by humans, and just a few hundred of these have been more or less domesticated. Even of these several hundred crops, most provide minor supplements to our diet and would not by themselves have sufficed to support the rise of civilizations. A mere dozen species account for over 80 percent of the modern world’s annual tonnage of all crops. Those dozen blockbusters are the cereals wheat, corn, rice, barley, and sorghum; the pulse soybean; the roots or tubers potato, manioc, and sweet potato; the sugar sources sugarcane and sugar beet; and the fruit banana. Cereal crops
alone now account for more than half of the calories consumed by the world’s human populations. With so few major crops in the world, all of them domesticated thousands of years ago, it’s less surprising that many areas of the world had no wild native plants at all of outstanding potential. Our failure to domesticate even a single major new food plant in modern times suggests that ancient peoples really may have explored virtually all useful wild plants and domesticated all the ones worth domesticating.
Yet some of the world’s failures to domesticate wild plants remain hard to explain. The most flagrant cases concern plants that were domesticated in one area but not in another. We can thus be sure that it was indeed possible to develop the wild plant into a useful crop, and we have to ask why that wild species was not domesticated in certain areas.
A typical puzzling example comes from Africa. The important cereal sorghum was domesticated in Africa’s Sahel zone, just south of the Sahara. It also occurs as a wild plant as far south as southern Africa, yet neither it nor any other plant was cultivated in southern Africa until the arrival of the whole crop package that Bantu farmers brought from Africa north of the equator 2,000 years ago. Why did the native peoples of southern Africa not domesticate sorghum for themselves?
Equally puzzling is the failure of people to domesticate flax in its wild range in western Europe and North Africa, or einkorn wheat in its wild range in the southern Balkans. Since these two plants were among the first eight crops of the Fertile Crescent, they were presumably among the most readily domesticated of all wild plants. They were adopted for cultivation in those areas of their wild range outside the Fertile Crescent as soon as they arrived with the whole package of food production from the Fertile Crescent. Why, then, had peoples of those outlying areas not already begun to grow them of their own accord?
Similarly, the four earliest domesticated fruits of the Fertile Crescent all had wild ranges stretching far beyond the eastern Mediterranean, where they appear to have been first domesticated: the olive, grape, and fig occurred west to Italy and Spain and Northwest Africa, while the date palm extended to all of North Africa and Arabia. These four were evidently among the easiest to domesticate of all wild fruits. Why did peoples outside the Fertile Crescent fail to domesticate them, and begin to grow them only when they had already been domesticated in the eastern Mediterranean and arrived thence as crops?
Other striking examples involve wild species that were not domesticated in areas where food production never arose spontaneously, even though those wild species had close relatives domesticated elsewhere. For example, the olive Olea europea was domesticated in the eastern Mediterranean. There are about 40 other species of olives in tropical and southern Africa, southern Asia, and eastern Australia, some of them closely related to Olea europea, but none of them was ever domesticated. Similarly, while a wild apple species and a wild grape species were domesticated in Eurasia, there are many related wild apple and grape species in North America, some of which have in modern times been hybridized with the crops derived from their wild Eurasian counterparts in order to improve those crops. Why, then, didn’t Native Americans domesticate those apparently useful apples and grapes themselves?
One can go on and on with such examples. But there is a fatal flaw in this reasoning: plant domestication is not a matter of hunter-gatherers’ domesticating a single plant and otherwise carrying on unchanged with their nomadic lifestyle. Suppose that North American wild apples really would have evolved into a terrific crop if only Indian hunter-gatherers had settled down and cultivated them. But nomadic hunter-gatherers would not throw over their traditional way of life, settle in villages, and start tending apple orchards unless many other domesticable wild plants and animals were available to make a sedentary food-producing existence competitive with a hunting-gathering existence.
How, in short, do we assess the potential of an entire local flora for domestication? For those Native Americans who failed to domesticate North American apples, did the problem really he with the Indians or with the apples?
In order to answer this question, we shall now compare three regions that lie at opposite extremes among centers of independent domestication. As we have seen, one of them, the Fertile Crescent, was perhaps the earliest center of food production in the world, and the site of origin of several of the modern world’s major crops and almost all of its major domesticated animals. The other two regions, New Guinea and the eastern United States, did domesticate local crops, but these crops were very few in variety, only one of them gained worldwide importance, and the resulting food package failed to support extensive development of human technology and political organization as in the Fertile Crescent. In the light of this comparison, we shall ask: Did the flora and environment of the Fertile Crescent have clear advantages over those of New Guinea and the eastern United States?
ONE OF THE central facts of human history is the early importance of the part of Southwest Asia known as the Fertile Crescent (because of the crescent-like shape of its uplands on a map: see Figure 8.1). That area appears to have been the earliest site for a whole string of developments, including cities, writing, empires, and what we term (for better or worse) civilization. All those developments sprang, in turn, from the dense human populations, stored food surpluses, and feeding of nonfarming specialists made possible by the rise of food production in the form of crop cultivation and animal husbandry. Food production was the first of those major innovations to appear in the Fertile Crescent. Hence any attempt to understand the origins of the modern world must come to grips with the question why the Fertile Crescent’s domesticated plants and animals gave it such a potent head start.
Fortunately, the Fertile Crescent is by far the most intensively studied and best understood part of the globe as regards the rise of agriculture. For most crops domesticated in or near the Fertile Crescent, the wild plant ancestor has been identified; its close relationship to the crop has been proven by genetic and chromosomal studies; its wild geographic range is known; its changes under domestication have been identified and are often understood at the level of single genes; those changes can be observed in successive layers of the archaeological record; and the approximate place and time of domestication are known. I don’t deny that other areas, notably China, also had advantages as early sites of domestication, but those advantages and the resulting development of crops can be specified in much more detail for the Fertile Crescent.
One advantage of the Fertile Crescent is that it lies within a zone of so-called Mediterranean climate, a climate characterized by mild, wet winters and long, hot, dry summers. That climate selects for plant species able to survive the long dry season and to resume growth rapidly upon the return of the rains. Many Fertile Crescent plants, especially species of cereals and pulses, have adapted in a way that renders them useful to humans: they are annuals, meaning that the plant itself dries up and dies in the dry season.
Within their mere one year of life, annual plants inevitably remain small herbs. Many of them instead put much of their energy into producing big seeds, which remain dormant during the dry season and are then ready to sprout when the rains come. Annual plants therefore waste little energy on making inedible wood or fibrous stems, like the body of trees and bushes. But many of the big seeds, notably those of the annual cereals and pulses, are edible by humans. They constitute 6 of the modern world’s 12 major crops. In contrast, if you live near a forest and look out your window, the plant species that you see will tend to be trees and shrubs, most of whose body you cannot eat and which put much less of their energy into edible seeds. Of course, some forest trees in areas of wet climate do produce big edible seeds, but these seeds are not adapted to surviving a long dry season and hence to long storage by humans.
A second advantage of the Fertile Crescent flora is that the wild ancestors of many Fertile Crescent crops were already abundant and highly productive, occurring in large stands whose value must have been obvious to hunter-gatherers. Experimental studies
in which botanists have collected seeds from such natural stands of wild cereals, much as hunter-gatherers must have been doing over 10,000 years ago, show that annual harvests of up to nearly a ton of seeds per hectare can be obtained, yielding 50 kilocalories of food energy for only one kilocalorie of work expended. By collecting huge quantities of wild cereals in a short time when the seeds were ripe, and storing them for use as food through the rest of the year, some hunting-gathering peoples of the Fertile Crescent had already settled down in permanent villages even before they began to cultivate plants.
Since Fertile Crescent cereals were so productive in the wild, few additional changes had to be made in them under cultivation. As we discussed in the preceding chapter, the principal changes—the breakdown of the natural systems of seed dispersal and of germination inhibition—evolved automatically and quickly as soon as humans began to cultivate the seeds in fields. The wild ancestors of our wheat and barley crops look so similar to the crops themselves that the identity of the ancestor has never been in doubt. Because of this ease of domestication, big-seeded annuals were the first, or among the first, crops developed not only in the Fertile Crescent but also in China and the Sahel.
Contrast this quick evolution of wheat and barley with the story of corn, the leading cereal crop of the New World. Corn’s probable ancestor, a wild plant known as teosinte, looks so different from corn in its seed and flower structures that even its role as ancestor has been hotly debated by botanists for a long time. Teosinte’s value as food would not have impressed hunter-gatherers: it was less productive in the wild than wild wheat, it produced much less seed than did the corn eventually developed from it, and it enclosed its seeds in inedible hard coverings. For teosinte to become a useful crop, it had to undergo drastic changes in its reproductive biology, to increase greatly its investment in seeds, and to lose those rock-like coverings of its seeds. Archaeologists are still vigorously debating how many centuries or millennia of crop development in the Americas were required for ancient corn cobs to progress from a tiny size up to the size of a human thumb, but it seems clear that several thousand more years were then required for them to reach modern sizes. That contrast between the immediate virtues of wheat and barley and the difficulties posed by teosinte may have been a significant factor in the differing developments of New World and Eurasian human societies.
Guns, Germs, and Steel Page 15