Secret Weapons

Home > Other > Secret Weapons > Page 20
Secret Weapons Page 20

by Brian Ford


  As we have seen, it is a tradition in many nations that the various arms of the military do not engage with each other, and so the Imperial Japanese Navy instructed their Research Institute to prepare their own study of nuclear weapons with several professors from the Imperial University in Tokyo. The conclusions were that a nuclear bomb was certainly a possibility, and that the Americans and Europeans would be working on the subject themselves; but that it was impossible for a weapon to be in production by the end of the war, and — since this would apply as much to the Allies — there was no need to pursue the matter. In 1943 the Imperial Japanese Naval Command returned to the topic with a pilot project under the leadership of Dr Bunsaku Arakatsu, a physicist who had studied under Rutherford at the Cavendish Laboratory, Cambridge, and at Berlin University, under Albert Einstein. One of his team was Hideki Yukawa, who would later become the first physicist from Japan to be awarded the Nobel Prize in 1949.

  The Army, meanwhile, embarked upon their own version of the project at Riken, while a separate arm of the Navy, the Fleet Administration Office, began funding research physicists at Kyoto University to design an atomic bomb of their own. The various schemes were surrounded by bureaucracy and little progress took place. Had the teams worked together, the outcome might have been different — but, as matters stood, the research made slow progress and there was never sufficient funding. Not until 1945 were the teams near the production of uranium for an atom bomb, and then the laboratories were attacked by the United States. By the time the Americans were inspecting the ruins of Japan at the end of the war, they discovered that the research laboratories at Riken — which they had expected to be state-of-the-art and advanced — were run down and neglected for lack of finance.

  Just as in the case of the Nazis, there have been allegations that the Japanese detonated a test weapon, on 12 August 1945 at Hungnam, Korea, a few days after the atomic bombs had been dropped on Hiroshima and Nagasaki. Here too, there is simply no evidence for the claim.

  Russian quest for an atom bomb

  The idea of an atom bomb in the Soviet Union led to the People’s Commissariat of Internal Affairs (NKVD) setting up an information-gathering project in 1940 and, at a conference on nuclear physics in Moscow, the proposal for research into atomic weapons was formally adopted. When Germany attacked Russia in 1941 all research was curtailed; not until 1942 was Stalin interested in an update on current knowledge. He had been lobbied by several leading nuclear physicists who had received smuggled copies of the British Maud Committee reports which said that an atomic bomb was a possibility. In spite of the pressures upon the Russian economy, Stalin at last gave the go-ahead. Espionage was stepped up and, because of the fashionable belief in communism that was emerging in Britain, a steady flow of information about the use of plutonium was beginning to reach Moscow from well-connected spies in Britain as well as America. They were also learning of the American plans for a nuclear reactor to be built in Chicago and in 1943 an eminent physicist named Klaus Fuchs came to the United States with the British team to continue developmental work.

  However, Fuchs was a Russian agent, and began to send the details of the work back to Moscow. He was posted to Los Alamos with Julius Rosenberg, another spy who was later executed with his wife. By the end of the war, all the current information on the bombs that the Americans were to successfully produce had already been sent to Russia, and teams of Soviet and American experts went on to pursue rival claims for supplies of uranium ore as Germany was invaded. For Russia this was of overwhelming importance, as they knew of no sources from which they could mine their own uranium. The Americans retrieved about 1,100 tons, ten times as much as the Soviets.

  Work in America had been well planned and perfectly coordinated. It was believed to have been carried out under complete secrecy, and the Americans were convinced that nobody outside the research project could possibly know anything about what was planned. On 16 July 1945 the first bomb was exploded in New Mexico, and at the Potsdam Conference later that month President Truman revealed to Stalin that America had a new super-weapon. The President was taken aback by Stalin’s reaction: the Russian leader seemed to be not in the least surprised. In August, the Soviet Union formally declared war against Japan and Stalin ordered that an atomic bomb should be manufactured ‘as quickly as possible’. It was by then, of course, too late.

  The uranium brought back from the Soviet conquest of Germany was used to build Russia’s first nuclear reactor, code named F-1, which was first initiated on 25 December 1946. They later found supplies from East Germany (the German Democratic Republic), and also in Czechoslovakia, Poland, Bulgaria and Romania. The Russians subsequently found large domestic supplies, and their first atomic explosion, code named First Lightning, took place on 29 August 1949. The design was based on the United States’ plutonium weapon, nicknamed Fat Man, details of which had been smuggled by spies back to Russia. And so the years of the Cold War began.

  Meanwhile, the Russians speedily designed and built the world’s first nuclear power station at their ‘science city’ of Obninsk, about 60 miles (100km) from Moscow. It was an experimental pilot station designed to produce about 30mW of thermal power, sufficient for 2,000 homes. The construction started in 1951 and the plant was connected to the domestic supply in June 1954. It ran successfully until April 2002.

  Atomic projects in France and China

  The involvement of the French in nuclear research had been assured by Pierre and Marie Curie, who worked with radium. Yet there was no finance available for developing nuclear weapons during World War II and the Fourth Republic proved to be a weak and ineffective government. Members of Marie Curie’s team later worked as part of the British group in the Manhattan Project and so helped the United States to build the atomic bomb.

  At the end of the war, all her native knowledge had gone and France had to begin afresh. Even so, the French reputation for scientific progress proved well-earned when the first French nuclear reactor went critical in 1948 and during the following year they were producing small quantities of weapons-grade plutonium. France carried out her first atom bomb test, the Gerboise Bleue (Blue Jerboa) on 13 February 1960 in the Sahara desert. In May 1962 an underground test of a bomb four times as powerful as the Hiroshima bomb went drastically wrong. The sealing of the shaft was blown out by the explosion, and many of the personnel were contaminated by the radiation.

  China did not develop atomic weapons in World War II either, and indeed did not carry out much research into particle physics until after the war. The first Chinese atomic bomb was tested on 16 October 1964 and yielded 22 kilotons. Within three years, China had tested their ultimate secret weapon of war — a hydrogen bomb.

  The People’s Republic now has an immense arsenal of nuclear weapons — and one of the main production facilities for the warheads is at Harbin, where the infamous Unit 731 was constructed during World War II.

  British work towards an atom bomb

  Before the outbreak of war, two expatriate German nuclear physicists, Otto Frisch and Rudolf Peierls, had come to work on nuclear fission at the University of Birmingham under Professor Marcus Oliphant. It was believed at the time that the world’s supply of uranium would be too limited to allow the making of a nuclear bomb within a matter of years, but when they came to reconsider the problem they calculated that just a few pounds (a matter of kilograms) of uranium would be sufficient to produce a bomb of immense power. This finding was classified as top secret, for it had enormous implications for the prospects for nuclear bombs as weapons of war. Oliphant considered this to be a startling revelation, and at once communicated the findings to Sir Henry Tizard, who was chairman of the Committee on the Scientific Survey of Air Defence, and one of the top military experts in Britain. A crucial breakthrough came at the Cavendish Laboratory, Cambridge, with the discovery that plutonium-239 was a by-product of the nuclear reactions of uranium.

  The result was the setting up of a committee, code named Maud because that wa
s the name of the governess whom Niels Bohr had employed for his children. By the end of 1940, the team had discovered that the making of a bomb from radioactive uranium was possible — and, as they later concluded, not only possible but inevitable with the eternal pressure for progress. In 1941, Peierls calculated a new ‘critical mass’ for Uranium-235 (U-235) at 18lb (8kg); the amount that would be necessary to sustain an atomic reaction if surrounded by a suitable reflector to retain stray neutrons could be half as much. The British were well aware that the work on nuclear fission had begun in Germany, and they were concerned that the Nazis might already be rushing ahead at the Kaiser Wilhelm Institute. The committee produced two highly influential top-secret reports. The first was entitled On the Use of Uranium for a Bomb and set out in detail how a bomb could be made with 27lb (12kg) of radioactive isotopes that would have the explosive power of 1,800 tons of TNT. They pointed out that radioactive contamination would make the surrounding area unsafe for humans for many years, and calculated that it would cost millions of pounds to produce. The main thrust of the American research at the time was the possibility that atomic power could be used for power generation, or as an energy source for submarines, and the Maud Committee proposed that the United States — who alone had the money for this project — should look instead at making an atomic bomb.

  Their second report was On the Use of Uranium as a Source of Power. They worked out how to produce an atomic reactor, and even how to moderate the rate of the reaction with graphite rods. They concluded that this system could produce an endless supply of heat and electricity for the future, but (with the demands of a world war) there were no resources available to develop the idea any further in Britain at present. Research went ahead on a shoe-string budget under the code name Tube Alloys in Britain, while the secret reports were sent to the Americans for their response — yet nothing happened. Eventually an emissary was sent to find out what was being decided, only to find that the reports had been sent to Lyman Briggs as Director of the top-secret United States Uranium Committee. He was described by the British as ‘inarticulate’ and it turned out that he had not understood the scientific reports, so he had just locked them away in the office safe.

  When the truth was revealed, it was agreed that the atom bomb would cost $25,000,000 and, although Tube Alloys could see how to make a bomb, the project lacked spare facilities. Even though the British handed over all their knowledge to the United States, the remarkable Calder Hall reactor in Cumbria (near the English Lake District) became the first nuclear power station in the world to deliver commercial quantities of electricity for public consumption in 1956, following the Russian pilot experiment that began in 1954. Meanwhile, a British atomic bomb was eventually manufactured and was detonated on 3 October 1952 at the Montebello Islands off the coast of Western Australia.

  Canadian nuclear research

  Although little is said of it now, the Canadians were also in the forefront of following up the revelations about the atom. Their scientists were concerned because crucial observations were being published by expatriate German nuclear scientists; it was feared that German science was secretly pressing ahead, and the Canadians were convinced for a time that there would be a Nazi atom bomb — and that would end the war with Germany as the victor. The early experiments in Ottawa demanded supplies of heavy water. This strange-sounding substance is an isotope of the water with which we are so familiar. Normal water, H2O, is composed of atoms of oxygen and hydrogen. Normal hydrogen atoms contain a proton as the nucleus and a single electron orbiting round. Heavy hydrogen (deuterium) has an extra neutron in the nucleus — it contains a proton and a neutron. The extra neutron is important in regulating nuclear reactions. Heavy water is very like normal water, and indeed is only very slightly more dense. Almost of all the heavy water in existence at the time was 407lb (185kg) that French scientists had obtained from a Norwegian hydroelectric plant. The nuclear physicists in charge of the research, Hans von Halban and Lew Kowarski, escaped to England, bringing this with them — at the time, almost all the heavy water in the world. They planned to use the heavy water to produce plutonium, and early experiments in Cambridge suggested it could work. It was then agreed that the British teams would work in cooperation with a team in Canada, safe from the threat of German bombing.

  The nuclear research in Ottawa set out to test whether the heart of a nuclear reactor, an atomic pile, could be constructed. They set to work with a bin measuring 8ft 9in (2.7m) in diameter containing 1,000lb (450kg) of uranium oxide obtained from Eldorado Gold Mines Limited. The British chemical company Imperial Chemical Industries (ICI) gave them a grant of $5,000 and they were able to make substantial progress during 1942 — but this was overtaken when the Chicago reactor became the first in the world to function. From that time on the Canadians devoted themselves to carrying on research to support the American effort.

  However, their research left them a useful legacy. By the time the war ended, Canada had the second largest nuclear research establishment in the world, overshadowed only by the United States. Their work on constructing nuclear reactors led to the building of the NRX (National Research eXperimental) reactor at the Chalk River Laboratories near Ottawa. It remained the world’s largest nuclear reactor for many years and soon began producing radioisotopes. Those are still used today to diagnose and treat cancer, and Canada has since been the world’s largest exporter of radioisotopes. Another reactor ten times as large was soon under construction and this became the NRU (National Research Universal) reactor. When it began work in 1957 it was, like NRX, the most powerful reactor in the world, and remained so for many years.

  The Manhattan Project

  The United States, however, became the focus of nuclear research and was destined to become the first nation to exploit the power of the atom. In 1939, Albert Einstein wrote a key letter that was delivered personally to the President. In it he stated: ‘A single [atom] bomb might well destroy a city and some of the surrounding territory’. President Roosevelt was impressed, and he immediately appointed Lyman Briggs at the National Bureau of Standards to set up the ‘Uranium Committee’. Once the recommendations of the Maud Committee had been discussed, and the Americans knew that a bomb could be built with far smaller amounts of fissile materials than anyone had realized, it was decided to press ahead urgently with development. In 1942 this led to the Manhattan Engineer Project which had the express aim of producing an atomic bomb. The project derived its name from the concentration of expertise in Manhattan itself. Within the borough there were some ten research sites, almost all of which stand to the present day. Their original headquarters were in a skyscraper adjacent to City Hall. Little has ever been said about these establishments since; the tourist or investigator will find little to remind today’s citizens of what went on. A historian of the period, Dr Robert S. Norris, says that as many as 5,000 staff were coming and going. Each person knew only enough to do their job — few had any sort of overview.

  The scientists originally on the committee were from various nations: the United States, Germany, Hungary, Italy, Denmark, Switzerland and Britain. To the British, where the research had made most progress, it seemed timely to shift the work to America where there were more resources, and where — unlike Britain — the industrial and research establishment was not overrun by the need simply to survive the onslaught of Germany. In the United States there was an immediately warm response to the project. Soon, however, the disparate nature of the nationalities involved was seen as problematical. Many of the British team had family in Europe, including some in nations that were now enemies of the Allied cause. The Americans felt that this could compromise security, and soon took over the project.

  They envisaged two types of atom bomb, one using uranium, the other plutonium. Work began at once on constructing an atomic pile under the leadership of a brilliant physicist, Enrico Fermi. It was called Chicago Pile-1 (CP-1) and stood on a rackets court under the abandoned west stands of the original Alonzo Stagg F
ield stadium at the University of Chicago. In December 1942 the first sustained nuclear reaction was started — and the dream of atomic power was known to be real. America could now produce the isotopes (like U-235) she needed to plan an atomic bomb.

  A PETITION TO THE PRESIDENT OF THE UNITED STATES

  Discoveries of which the people of the United States are not aware may affect the welfare of this nation in the near future. The liberation of atomic power which had been achieved places atomic bombs in the hands of the Army. It places in your hands, as Commander-in-Chief, the fateful decision whether or not to sanction the use of such bombs in the present phase of the war against Japan.

  We, the undersigned scientists, have been working in the field of atomic power. Until recently, we have had to fear that the United States might be attacked by atomic bombs during this war and that her only defense might lie in a counterattack by the same means. Today, with the defeat of Germany, this danger is averted and we feel impelled to say what follows:

  The war has to be brought speedily to a successful conclusion and attacks by atomic bombs may very well be an effective method of warfare. We feel, however, that such attacks on Japan could not be justified, at least not unless the terms which will be imposed after the war on Japan were made public in detail and Japan were given an opportunity to surrender.

  If such public announcement gave assurance to the Japanese that they could look forward to a life devoted to peaceful pursuits in their homeland and if Japan still refused to surrender our nation might then, in certain circumstances, find itself forced to resort to the use of atomic bombs. Such a step, however, ought not to be made at any time without seriously considering the moral responsibilities which are involved…

 

‹ Prev