Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives

Home > Other > Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives > Page 2
Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives Page 2

by Michael Specter


  This antipathy toward the ideas of progress and scientific discovery represents a fundamental shift in the way we approach the world in the twenty-first century. More than at any time since Francis Bacon invented what we have come to regard as the scientific method (and Galileo began to put it to use), Americans fear science at least as fully as we embrace it. It is a sentiment that has turned our electrifying age of biological adventure into one of doubt and denial. There have always been people who are afraid of the future, of course—Luddites, ignorant of the possibilities of life on this planet and determined to remain that way. No amount of data will convince climate denialists that humans have caused the rapid, devastating warming of the earth. And no feat of molecular genetics will make a creationist understand that our species has evolved over billions of years, along with every other creature.

  Common strains of denialism are even more troubling, though, because they show what happens when unfettered scientific achievement bumps up against the limits of human imagination. Manipulating the genes of cows or corn was only a first step. Today, we routinely intrude on every aspect of human and natural life. That fact traumatizes people—and not entirely without reason. Mary Shelley couldn’t have imagined what goes on in thousands of laboratories today. Scientists all over the world are resurrecting viruses that have been extinct for millions of years. They are constructing organs out of spare parts, and it is only a matter of time (and not much time either) before synthetic biologists design, then grow, entirely new forms of life—organisms that have never before existed in the natural world. The speed at which all this is happening has made many people fear that we are about to lose control, not only over the world we have always viewed as our dominion, but of human life as well.

  Nothing scares us quite as much. Controlling life is something we have attempted since we domesticated cattle and began to grow food. The scientific revolution helped solidify the idea that our species was in command and, as Bacon put it in The New Atlantis, able to “establish dominion over nature and effect all things possible.” Yet there have always been committed efforts at stopping the march of technology.

  In 1589, Queen Elizabeth refused to fund a project to make a knitting machine, saying, “My lord, I have too much love for my poor people who obtain their bread by knitting to give money that will forward an invention which will tend to their ruin by depriving them of employment.” Three centuries later, in 1863, Samuel Butler became the first to write about the possibility that machines might evolve through Darwinian selection. Although many readers thought he was joking in his essay “Darwin Among the Machines,” Butler was serious (and astonishingly prescient):There are few things of which the present generation is more justly proud than of the wonderful improvements which are daily taking place in all sorts of mechanical appliances. . . . Day by day, however, the machines are gaining ground upon us; day by day we are becoming more subservient to them; more men are daily bound down as slaves to tend them, more men are daily devoting the energies of their whole lives to the development of mechanical life. The upshot is simply a question of time, but that the time will come when the machines will hold the real supremacy over the world and its inhabitants is what no person of a truly philosophic mind can for a moment question.

  If anything, that fear is more pronounced today (and more understandable) than ever before. Denialism is often a natural response to this loss of control, an attempt to scale the world to dimensions we can comprehend. Denialism is not green or religious or anti-intellectual, nor is it confined to utopian dreamers, agrarians, or hippies. It is not right- or left-wing; it is a fear expressed as frequently and with as much fervor by Oxford dons as by bus drivers.

  The fear has seeped across Britain, Europe, and the developing world. But nowhere is it more evident than in the United States, a country that has always defined itself by its notion of progress and technological prowess. We may be a nation of immigrants, but more than that we are the nation that invents: from refrigerators to resistors, antibiotics, jets, and cell phones, to the computer software that governs much of our lives and the genetic sequencing technology that will soon begin to do so. What would have seemed like sorcery a century ago is now regarded simply as fact. In 1961, Arthur C. Clarke famously wrote that “any sufficiently advanced technology is indistinguishable from magic.”

  Who could make such a statement today? What would magic look like to us? It has become routine to deliver babies months before they are considered alive—not to mention to keep people breathing long after they are, in any meaningful sense, dead. My grandfather died in 1962 at the age of sixty-six. That was exactly how long men born at the turn of the twentieth century were “expected” to live, and while he was mourned, nobody considered his death premature. They certainly would have today, though. Just forty-six years later, a healthy fifty-year-old man can expect to live to the age of eighty.

  At least since the Enlightenment, when science effectively replaced religion as the dominant ideology of mankind, progress has been our purpose. We have moved from the discovery of the compass (and our sense of where we are in the physical world) to the invention of gunpowder, to the astonishing ability to take pictures that see through human flesh—only to arrive at the defining event of the twentieth century: the splitting of the atom. As Manhattan Project scientists gathered in New Mexico on July 16, 1945, to await results from the first test of the atomic bomb, they were anxious and afraid. Many took bets on whether they were about to set the sky ablaze and destroy the world.

  New technologies are always accompanied by new risks and at least one deeply unsettling fact: once you invent something you cannot uninvent it. That sounds simple, but since that day in New Mexico more than half a century ago that knowledge has changed society, planting seeds of fear into even the most promising discoveries. The superpowers may have averted a cold war and dismantled many of the nuclear weapons that had threatened to annihilate us. But they didn’t uninvent them and they never could. H. G. Wells said that civilization is a race between education and catastrophe. He was right. Even more than that, though, civilization is a race between innovation and catastrophe.

  That race only grows more frantic. Global nuclear war, while by no means impossible, is a less likely prospect than it was twenty years ago. But there is nothing unlikely about assembling life from scratch, cloning copies of ourselves, or breeding extinct animals. In November 2007, for the first time, researchers successfully cloned embryos from the single cell of an adult monkey. The work put an end to any debate about whether primates—the group that includes not only monkeys but men—are biologically capable of being turned into clones. Faust and Frankenstein have been with us for a long time. But the wall between science fiction and reality has practically vanished, and there is evidence of that in even the most trivial places.

  The 2007 film I Am Legend was hardly a cinematic master-piece, but it opens with a scene in which a doctor explains to a TV news anchor how she was able to cure cancer by mutating the measles virus and harnessing its destructive power. She tells him that measles is like “a fast car with a madman at the wheel,” but her team believed it could be used for good if “a cop were driving it instead.” So they used the virus to cure cancer, which was wonderful until the misprogrammed organism wiped out nearly everyone on earth. Like Godard’s film Le Nouveau Monde and the original 1954 book on which both films were based, I Am Legend is pure fiction, another story of a virus gone wild. That doesn’t mean it will be fiction tomorrow.

  In early 2009, a team from the Mayo Clinic reported that certain measles strains could prove effective as a treatment for cancer. “These viral strains could represent excellent candidates for clinical testing against advanced prostate cancer,” said Evanthia Galanis, the senior author of the paper. The viral strains were inactivated, harmless, and well contained in a highly secure lab. Nonetheless, it is hard not to recoil when life imitates art so faithfully.

  “Of course this is all possible,” Drew Endy said
when I asked him whether the theoretical threats posed by the new science of synthetic biology were real. “If we don’t want to exist, we can stop existing now.” Endy is a biological engineer at Stanford University who is essentially attempting to turn human cells into software that we can program. Instead of producing iTunes or spreadsheets, however, this software would attack tumors, repair arteries clogged with cholesterol, and prevent diseased cells from destroying the immune system. Endy is an optimist, but he readily acknowledges the dangers associated with his work. “Why wouldn’t we be afraid?” he said. “We are speaking about creating entirely new forms of life.”

  FIFTY YEARS AGO, we venerated technology. At least until we placed our feet on lunar soil, our culture was largely one of uncritical reverence for the glories that science would soon deliver. The dominant image of popular American culture was progress. TV shows like Star Trek and The Jetsons were based on a kind of utopian view of the scientific future. Even the Flintstones were described as a “modern” Stone Age family. We were entering an era without disease or hunger. If we ran out of water we would siphon salt from the seas and make more; if nature was broken we could fix it. If not, we could always move to another planet.

  That vision no longer seems quite so enchanting. No doubt our expectations were unreasonable—for science and for ourselves. We also began to recognize the unintended consequences of our undeniable success. About a month before Neil Armstrong made his large step on the moon, the heavily polluted Cuyahoga River erupted in flames near Cleveland, creating an indelible image of industry at war with nature. A few years later, in 1976, Karen Ann Quinlan was removed from life support, igniting the first horrific battle of the modern era over how we live and die. The end of the decade was marked by the ghastly accident at Three Mile Island, which showed more clearly than ever that the effects of the Industrial Revolution were not all benign. The thalidomide disaster, mad cow disease, even the dramatic and sustained lies of Big Tobacco have all contributed to the sense that if the promise of science wasn’t a lie, it wasn’t exactly the truth either.

  Today the image of a madman whipping up a batch of small pox, or manufacturing an effective version of bird flu in his kitchen, while not exactly as easy as baking a cake, is no longer so far-fetched. Indeed, if there is anything more frightening than the threat of global nuclear war, it is the certainty that humans not only stand on the verge of producing new life forms but may soon be able to tinker with them as if they were vintage convertibles or bonsai trees.

  Our technical and scientific capabilities have brought the world to a turning point, one in which accomplishments clash with expectations. The result often manifests itself as a kind of cultural schizophrenia. We expect miracles, but have little faith in those capable of producing them. Famine remains a serious blight on humanity, yet the leaders of more than one African nation, urged on by rich Europeans who have never missed a meal, have decided it would be better to let their citizens starve than to import genetically modified grains that could feed them.

  Food is a compelling example of how fear has trumped science, but it is not the only evidence that we are waging a war against progress, rather than, as Peter Melchett would have it, against nature. The issues may be complex but the choices are not: we are either going to embrace new technologies, along with their limitations and threats, or slink into an era of magical thinking. Humanity has nearly suffocated the globe with carbon dioxide, yet nuclear power plants that produce no such emissions are so mired in objections and obstruction that, despite renewed interest on every continent, it is unlikely another will be built in the United States. Such is the opposition to any research involving experiments with animals that in scores of the best universities in the world, laboratories are anonymous, unmarked, and surrounded by platoons of security guards.

  For hundreds of years we had a simple but stunningly effective approach to our interaction with the physical world: what can be understood, and reliably repeated by experiment, is what nature regarded as true. Now, at the time of mankind’s greatest scientific advances (and our greatest need for them), that deal is off. Snake oil salesmen may be old news in America, but today quacks—whose research is even funded by the federal government—take out ads in the New York Times denouncing scientists who rely on evidence-based medicine to treat our most devastating diseases.

  We are now able to stare so deeply into the molecular history of the human genome that, peering one hundred million years into the past, we can see that we shared a common ancestor with the elephant. Scientists are tantalizingly close to understanding how the trillions of cells in our bodies work and interact with each other. Nonetheless, in 2007, a $27 million Creation Museum opened in Kentucky, complete with bumper stickers that proclaim “We’re Taking Dinosaurs Back.” That’s fitting, since no matter how you ask the question, at least one in three American adults rejects the concept of evolution, believing instead that humans descended from heaven several thousand years ago in our present form.

  Science and religion have always clashed and always will. Einstein put it best: science without religion is lame, religion without science is blind. In the past, that conflict, while often painful, never managed to derail progress. We can no longer say that. If anything, our increasingly minute knowledge of the origins of humanity has served only to fuel the intelligent design movement, not to dampen it. In 2005, when the American Museum of Natural History mounted the most significant exhibition ever devoted to Charles Darwin, the leadership there couldn’t find a single corporate sponsorship, as they always had been able to do in the past. Few American companies were willing to risk a boycott staged by those who object to the theory of evolution.

  Denialism must be defeated. There is simply too much at stake to accept any other outcome. Who doesn’t have a family member with diabetes, Parkinson’s disease, Alzheimer’s, or some form of cancer? When faced with genuine solutions (not just promises) to such terrible fates, few will continue to question the value of stem cell research or cloning. Even Nancy Reagan, whose husband served as commander-in-chief of the American war against legal abortion, became an ardent and vocal supporter of stem cell research after watching him submit to the dark fog of Alzheimer’s disease.

  We have acquired more knowledge in the past decade than in the previous two centuries. Even bad news soon proves its worth. Look at avian influenza: bird flu may cause a devastating epidemic. Viruses, like earthquakes and volcanic eruptions, will always be part of life on earth. (Not long before he died, Nobel Prize-winning biologist Joshua Lederberg told me that the “single biggest threat to man’s continued dominance on this planet is the virus.” He was not alone in believing that.) Nonetheless, avian influenza is the first potential pandemic in the history of humanity that can be understood even before it becomes contagious. Researchers have mapped every gene and protein in the virus and are well on their way to developing a vaccine.

  Science has slowly come to define us. In 1959, C. P. Snow delivered his “Two Cultures” speech at Cambridge University, in which he asserted that the chasm between the worlds of science and the humanities was making it hard to solve the earth’s most pressing problems. He had a point at the time. But we don’t have two cultures anymore, we have one. Students in many classrooms seek answers to the remaining intricacies contained within the human genome, and if they don’t understand their research they can always turn to the Internet to find an eager tutor from one of a dozen nations. In India and China, young engineers and biologists use Skype to conduct videoconferences with colleagues from Boston to Berlin. It costs nothing. Two generations ago, in the unlikely event that their grandparents had known how to write a letter, they would never have been able to afford postage stamps or find a place to mail it.

  Ultimately, dramatic achievements have always taken us past our fears and overcome denialism—because progress offers hope and for humans nothing beats hope. Fear might threaten progress; in the end, though, it won’t prevent it. Not long ago, after publishi
ng a piece in the New Yorker on scientists who were reconstructing extinct viruses, I received this letter: “Not discounting the great advances we have made with molecular biology over the last twenty-five years, I dare say the question remains . . . will this generation of scientists be labeled the great minds of the amazing genetic-engineering era, or the most irresponsible scientists in the history of the world? With the present posture of the scientific community, my money, unfortunately, is on the latter.”

  Those words might as well have been torn from a denialist instruction manual: change is dangerous; authorities are not to be trusted; the present “posture” of the scientific community has to be one of collusion and conspiracy. Most important, the facts are inside out, because “discounting” the great advances of molecular biology is exactly what the author of that letter did.

  Scientists should do a better job of explaining the nature and the potential impact of their work (and so should those of us who write about science). We need to have open debates—on national television and guided by people like President Obama—about how to engage the future and make sense of both the possibilities and risks that lie ahead. Education will have to improve as well. But to call the group that has decoded the language of life, and has already begun to use that information to treat and prevent scores of diseases, “the most irresponsible scientists in the history of the world” is specious. Without the tools of molecular biology, we wouldn’t have a clue how the AIDS virus works. Instead of having killed twenty-five million people in the twentieth century and infected an even larger number, the toll of such an unimpeded epidemic would have already numbered in the billions.

  No achievement of modern technology, not even nuclear power, has been more bitterly disputed than our ability to alter the genetic composition of food or to create artificial products from human cells. Yet no discovery is more likely to provide solutions to the greatest threat the earth has ever faced: the rapid pace of global warming. If we do not develop clean technologies soon, our species won’t survive.

 

‹ Prev