Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives

Home > Other > Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives > Page 11
Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives Page 11

by Michael Specter


  By 2050, if not sooner, the earth will have half again as many people as it does today, more than nine billion. Long before that, though, possibly within the next twenty years, world food demand will have doubled. The Green Revolution largely bypassed Africa, and people in many countries there are actually getting poorer; but something surprising has happened throughout much of the rest of the developing world. Success itself has placed unbearable new burdens on the food supply. Agrarian societies have traditionally consumed little meat. But in China and other East Asian nations where income has been growing rapidly, that is no longer true. In India, 65 percent of the population still works on farms. Nonetheless, the country now has more than 280 million urban residents, and the shift to city life, which began more than a hundred years ago as rural residents fled famine and drought, continues.

  Every day one hundred thousand Indians join the middle class; the trend in China is similar. As people get wealthier, and as they move away from the farm, their eating habits change. The biggest of those changes is that they start to eat meat. The UN’s Food and Agriculture Organization (FAO) expects that global meat production will double by 2050 (which is more than twice the rate of human population growth). The supply of meat has already tripled since 1980: farm animals take up the vast majority of agricultural land and eat one-third of the world’s grain. In the rich nations we consume three times the meat and four times the milk per capita of people in poorer countries. But that is changing rapidly, and as it does we will have to find ways to grow more grain to feed those animals—and to do it all on less land, and with less available water, than we have today. It is this demographic reality, more than population growth alone, that most seriously threatens the global food system.

  Climate change, environmental degradation, water scarcity, and agricultural productivity are all intertwined. It will not be possible to solve any of those problems unless we solve them all. Climate change is likely not only to bring warmer temperatures but also to alter patterns of rainfall, placing even more stress on agriculture. Livestock already consume 80 percent of the world’s soybeans and more than half the corn. Cattle require staggering amounts of fresh, potable water. It takes thirteen hundred gallons of water to produce a single hamburger; a steak requires double that amount.

  Water scarcity may be the most visible problem caused by our addiction to meat, but it is not the only one: to make a pound of beef requires nearly a gallon of fuel. To put that into perspective, producing one kilogram of the grass-fed beef so revered by organic devotees and high-end restaurants causes the same amount of greenhouse gas emissions as driving a small car 70.4 miles. Even for beef raised less luxuriously (fed by grain on industrial farms) the figure is nearly forty-five miles. Eating meat is ecologically ruinous: according to a 2008 study by researchers at Carnegie Mellon University, if we all skipped meat and dairy just one day each week it would do more to lower our collective carbon footprint than if the entire population of the United States ate locally produced food every day of the year.

  Malthus may have badly underestimated human ingenuity, but he did get one formula right: combine intense population pressure with high levels of poverty, reduce the opportunity for technological advances, and the guaranteed result will be famine and death. In 2005, an average hectare of land could feed four and a half people; by 2050 that same plot will need to support at least six people (and possibly closer to eight). The only way that will happen is by producing more food per hectare—more crop, as agronomists like to say, per drop. That is not the direction in which the world has been moving. Grain production began to decline in the 1990s for the first time since World War II. Africa, the continent that needs the most help, is the place that is faltering most profoundly. Total production on farms there, according to the World Resources Institute, is nearly 20 percent less than it was in 1970. Without another agricultural revolution, that trend will surely accelerate.

  IF WE GENUINELY care about sharing our fate, and making food more readily available to everyone, there is only one question worth asking: how can we foment that next revolution? Certainly we need a better way to grow crops, one that sustains the earth but also makes the most efficient possible use of it. Breeding is the art of choosing beneficial traits and cultivating them over time. Farmers have done that for thousands of years by crossing plants that were sexually compatible and then selecting among the offspring for what seemed like desirable characteristics—large seeds, for example, or sturdy roots. That had always been a laborious and time-consuming process: mixing vast numbers of genes—sometimes whole genomes—almost entirely at random meant transferring many genes agronomists didn’t want in order to get the ones they were looking for.

  These extra genes often had negative effects, and it could take years of testing new strains to remove them. It was a crude system, akin to panning for tiny amounts of gold in a rushing river filled with stones, but given enough time it usually worked. By conserving seeds and careful mating, farmers learned how to make better plants, as well as entirely new varieties. All the plants we eat (corn, wheat, peanuts, rice) and many that we don’t (orchids, roses, Christmas trees) have been genetically modified through breeding in an effort to make them last longer, look better, taste sweeter, or grow more vigorously in arid soil. So have most varieties of grapefruit, watermelon, lettuce, and hundreds of other fruits, vegetables, and grains that are for sale in any supermarket.

  Evolution, which works on a different time scale and has no interest in easing the life of any particular species, does essentially the same thing: selects for desired traits. Humans have no choice but to try and hasten the process. Modern agriculture—and modern medicine—really didn’t begin until 1953, when James Watson and Francis Crick discovered the structure of the DNA molecule, which carries the information that cells need to build proteins and to live. Genetics and molecular biology are simply tools to help scientists choose with greater precision which genes to mix (and how to mix them).

  Advocates of organic farming, almost always speaking from—if not for—the world’s richest countries, say the “natural” approach to breeding plants could solve food shortages and address issues of environmental sustainability at the same time. More importantly, they argue that genetic engineering has promised more than it can, or at least has, delivered (which is true, in part because opposition and bureaucratic meddling have made it true). The most vocal criticism of genetically engineered crops, and the easiest to dismiss, is based on willful ignorance, the driving force of denialism. The best-known representative of this group is Prince Charles, who summed his argument up nicely many years ago: “I happen to believe that this kind of genetic modification takes mankind into realms that belong to God, and to God alone.” Putting aside the fact that not all farmers believe in God, the prince’s assessment betrays his complete ignorance of the continuum of evolution and the unmistakable connection between “conventional” plant breeding and genetic engineering.

  All the foods we eat have been modified, if not by genetic engineering then by plant breeders or by nature itself. After all, corn, in its present form, wouldn’t exist if humans had not cultivated the crop. The plant doesn’t grow in the wild and would never survive if we suddenly stopped eating it. Does God object to corn? The prince skipped over another, equally essential truth: genetic mutation occurs naturally in all living things. Genes are constantly jumping around and swapping positions without any laboratory assistance; in fact, evolution depends on it.

  There are more legitimate reasons to worry about genetically engineered foods. The speed with which this technology has spread across the globe transformed agriculture before many people ever realized it. “So confident are the technicians of the safety of their products that each one is seen as no more than an arbitrary mix of independent lengths of DNA,” the popular British geneticist Steve Jones has written. “Their view takes no account of the notion of species as interacting groups of genes, the properties of one . . . depending upon the others wit
h which it is placed.” Virus-resistant crops, for example, contain viral genes in all their cells. But viruses can introduce genetic material to their host cells, which means that these crops could, in theory, be able to create new diseases rather than defend against them.

  The most vivid example of this kind of unintended consequence occurred in 1995, when scientists working at the seed company Pioneer Hi-Bred placed genes from a Brazil nut into a soybean, to help increase levels of two amino acids, methionine and cysteine, in order to make beans used as animal feed more nutritious. Technically, the experiment was a success, but the newly engineered bean also demonstrated how changing just a few molecules of DNA might affect the entire food chain. Many people are allergic to Brazil nuts, and they pay particular attention to labels. Yet labels cannot list every amino acid used to cultivate every crop that is then eaten by every animal, and which might ultimately find its way into a product. If somebody were unwittingly to eat a cake made with soy that contained the Brazil nut protein, the results could be deadly. (In this case, the Brazil nut soybean was never eaten. Pioneer took blood from nine people in a laboratory, and stopped the experiments when the serum tested positive. Still, with such research occurring in countries that lack strong regulatory systems, similar mistakes could have frightening consequences.)

  There is an even darker and more abiding fear: that genetically engineered pollen will escape into the wild, altering plant ecosystems forever. That is both more likely and less dangerous that it seems. Pollen doesn’t simply plop onto any plant, have sex, and create new seeds; it would first have to blow across a field and land on a compatible mate. If not, there would be no new seeds and little environmental danger. Genetically engineered crops have been planted on more than one billion acres, yet there have been no examples of domesticated crops damaged by genetic promiscuity. That doesn’t mean it couldn’t happen—but it’s not surprising that it hasn’t. Most major crops have few relatives close enough to mate with, and wild species don’t mix easily with those that are domesticated.

  Biotechnology is not without risks for people or the environment, nor is its potential unlimited. Nonetheless, that potential can never be expanded or explored as long as irrational fear and zealous denial prevent nearly every meaningful attempt to introduce genetically engineered crops in places like Africa. Agricultural investment and research there has withered even as the population continues to climb. European and American critics frequently state that the risks of genetically engineered crops outweigh their benefits. They have unrealistic expectations—as denialists so often do. If people in Geneva or Berkeley want to pretend that genetically engineered products pose a danger that scientists have been unable to discover, they should go right ahead. The risk and reward equation looks entirely different in sub-Saharan Africa, however, where starvation is common and arable land almost impossible to find.

  No continent needs agricultural improvement more desperately than Africa; yet there is no place where fear and denialism are more pronounced. (Until recently South Africa was the only country that permitted the harvesting of genetically engineered crops for commercial uses; not long ago Kenya became the second.) Why the resistance? Some leaders simply reject Western products on principle, particularly those, like drugs and engineered crops, that are hyped as vehicles of salvation. Commerce, too, plays a role, and so does history. “The governments and citizens of Europe continue to exercise considerable postcolonial influence in Africa through a range of mechanisms,” Robert Paarlberg wrote in his 2008 book Starved for Science: How Biotechnology Is Being Kept Out of Africa. Paarlberg, who has long studied the impact of science and technology on farmers in the developing world, noted that European countries provide a great deal of technical assistance, financial aid, and nongovernmental advocacy to Africa. But nothing comes without strings attached, and African governments learned quickly that nobody in European countries had any intention of purchasing exports grown with modified seeds. “Through each of these channels today Europe is telling governments in Africa that it would be best to stay away from agricultural GMOs and African governments have responded accordingly,” Paarlberg wrote.

  Total reliance on organic farming would force African countries to devote twice as much land per crop as we do in the United States. It would also put the profligate West in the position of telling the world’s poorest nations—as well as its fastest-growing economies—that they don’t deserve to reap benefits that we have for so long taken for granted (and abused). That is the central message agricultural denialists have for Africa, and not just for Africa. It may be possible to convince China and India that burning less coal in their factories will not only ease carbon emissions but also lower their considerable health care costs. Lecturing people who have just purchased their first car or apartment about how cheeseburgers are going to kill them or destroy the planet is a different task. Do as I say, not as I do doesn’t work with American teenagers; why should it work in Bangalore or Beijing? It should be no surprise that McDonald’s franchises are growing faster in India and in China than anywhere else in the world.

  Growth and poverty have come together—often in the same countries—to threaten the future for us all. Nearly a billion people go to bed hungry every night. Lack of food is not the only reason, and some argue that it is not even the principal reason. Politics, war, greed, tribal hatred, and bad government also contribute significantly to the problem. Now, so does something else: the growing demand for agricultural feedstocks to use as biofuel. In 2008, that demand pushed food prices ever higher, despite the recession, and the number of starving people rose to 14 percent of the world’s population, according to the Food and Agriculture Organization. Three out of every four of those people live in rural areas and depend on agriculture to stay alive. As the world’s financial crisis deepens, the bleak international economy can only add to the suffering. (Even lower prices rarely help struggling farmers during a severe recession; they are simply left with fewer incentives to plant a new season’s crops. At the same time, poor people are finding it nearly impossible to obtain loans to buy seed and fertilizer.)

  To cope, Africans will need better governments. The quality of farming doesn’t really matter to countries engaged in eternal civil war or riven by corruption. The continent will also have to acquire new technology and the skill to employ it aggressively. “We are going to need a lot of inventiveness about how we use water and how we grow crops,” Nina Fedoroff said. Fedoroff, a molecular biologist who has worked on plant genetics for many years, is the science adviser to Secretary of State Hillary Clinton. She believes people have become so hobbled by their fear of genetically engineered food that it threatens not only progress but peace. “People clearly are afraid and that is very hard to watch,” she said. “We accept exactly the same technology in medicine and yet in food we want to go back to the nineteenth century. We would never think of going to our doctors and saying, ‘Gee, treat me the way doctors treated people in the nineteenth century. Don’t use anything you learned in the twentieth century.’ Yet that is what we are demanding in food production for the world, and at the same time we are seeing the number of people who don’t have enough to eat grow and grow.

  “We need to change the way we live and we clearly need scientifically sound ways of managing the resources that we have,” she continued. “We have treated our planet as an infinitely exploitable resource. That has to come to an end.”

  ONE AFTERNOON in the beginning of February 2009, Louise Fresco stood on a stage in Long Beach, California, and held up two loaves of bread. “One is a supermarket standard white bread, prepackaged, which I am told is called a Wonder Bread,” said the Dutch agronomist, who is an expert on sustainable development and agricultural societies. She was speaking to seventeen hundred people at the annual TED conference. TED stands for “Technology, Entertainment, Design,” and in the twenty-five years since its inception the meeting has attracted many of the most enlightened and progressive representatives in those fields
and others. Organic food is a given at TED, and so increasingly is a focus on solving the health and hunger crises that have engulfed so much of the developing world.

  “This one is more or less a wholemeal, handmade bread from a small bakery,” she continued, waving a brown, homey-looking loaf in front of her audience. “I want to see a show of hands—who prefers the wholemeal bread?” A forest of arms filled the air. “Okay, let me do this differently,” she said, laughing. “Does anybody prefer the Wonder Bread?”

  Two people timidly raised their hands. “Okay. Now the question is really, Why is this so? Because, naturally, we feel this kind of bread”—she said, holding the rustic loaf aloft—“is about authenticity. It’s about a traditional way of living, a way that is perhaps more real, more honest.” At that point she showed a slide of a generically happy family sitting over a meal at a table in Tuscany. There, she said, people still feel that agriculture is about beauty. About home and hearth. “We have somehow in the last few decades started to cultivate an image of a mythical rural agricultural past,” she told the audience. “It is only two hundred years ago that we had the invention of industrial agriculture. What did that revolution do to us? It brought us power.” And freedom from a life spent kneeling in sodden rice paddies or struggling fourteen hours a day to collect cotton bolls or snap peas. Freedom, in short, from an existence governed by agony, injury, and pain—one that most farmers, and most humans, have always had to endure. (Agriculture is still among the most dangerous of American professions and is associated with one of the highest rates of early mortality.)

 

‹ Prev