Q: Did you notice anything unusual while you were doing the counting task?
A: No.
Q: Did you notice anything other than the players?
A: Well, there were some elevators, and S’s painted on the wall. I don’t know what the S’s were there for.
Q: Did you notice anyone other than the players?
A: No.
Q: Did you notice a gorilla?
A: A what?!?
Amazingly, roughly half of the subjects in our study did not notice the gorilla! Since then the experiment has been repeated many times, under different conditions, with diverse audiences, and in multiple countries, but the results are always the same: About half the people fail to see the gorilla. How could people not see a gorilla walk directly in front of them, turn to face them, beat its chest, and walk away? What made the gorilla invisible? This error of perception results from a lack of attention to an unexpected object, so it goes by the scientific name “inattentional blindness.” This name distinguishes it from forms of blindness resulting from a damaged visual system; here, people don’t see the gorilla, but not because of a problem with their eyes. When people devote their attention to a particular area or aspect of their visual world, they tend not to notice unexpected objects, even when those unexpected objects are salient, potentially important, and appear right where they are looking.9 In other words, the subjects were concentrating so hard on counting the passes that they were “blind” to the gorilla right in front of their eyes.
What prompted us to write this book, however, was not inattentional blindness in general or the gorilla study in particular. The fact that people miss things is important, but what impressed us even more was the surprise people showed when they realized what they had missed. When they watched the video again, this time without counting passes, they all saw the gorilla easily, and they were shocked. Some spontaneously said, “I missed that?!” or “No way!” A man who was tested later by the producers of Dateline NBC for their report on this research said, “I know that gorilla didn’t come through there the first time.” Other subjects accused us of switching the tape while they weren’t looking.
The gorilla study illustrates, perhaps more dramatically than any other, the powerful and pervasive influence of the illusion of attention: We experience far less of our visual world than we think we do. If we were fully aware of the limits to attention, the illusion would vanish. While writing this book we hired the polling firm SurveyUSA to contact a representative sample of American adults and ask them a series of questions about how they think the mind works. We found that more than 75 percent of people agreed that they would notice such unexpected events, even when they were focused on something else.10 (We’ll talk about other findings of this survey throughout the book.)
It’s true that we vividly experience some aspects of our world, particularly those that are the focus of our attention. But this rich experience inevitably leads to the erroneous belief that we process all of the detailed information around us. In essence, we know how vividly we see some aspects of our world, but we are completely unaware of those aspects of our world that fall outside of that current focus of attention. Our vivid visual experience masks a striking mental blindness—we assume that visually distinctive or unusual objects will draw our attention, but in reality they often go completely unnoticed.11
Since our experiment was published in the journal Perception in 1999, under the title “Gorillas in Our Midst,”12 it has become one of the most widely demonstrated and discussed studies in all of psychology. It earned us an Ig Nobel Prize in 2004 (awarded for “achievements that first make people laugh, and then make them think”) and was even discussed by characters in an episode of the television drama CSI.13 And we’ve lost count of the number of times people have asked us whether we have seen the video with the basketball players and the gorilla.
Kenny Conley’s Invisible Gorilla
Dick Lehr brought Kenny Conley to Dan’s laboratory because he had heard about our gorilla experiment, and he wanted to see how Conley would do in it. Conley was physically imposing, but stoic and taciturn; Lehr did most of the talking that day. Dan led them to a small, windowless room in his laboratory and showed Conley the gorilla video, asking him to count the passes by the players wearing white. In advance, there was no way to know whether or not Conley would notice the unexpected gorilla—about half of the people who watch the video see the gorilla. Moreover, Conley’s success or failure in noticing the gorilla would not tell us whether or not he saw Michael Cox being beaten on Woodruff Way six years earlier. (These are both important points, and we will return to them shortly.) But Dan was still curious about how Conley would react when he heard about the science.
Conley counted the passes accurately and saw the gorilla. As is usual for people who do see the gorilla, he seemed genuinely surprised that anyone else could possibly miss it. Even when Dan explained that people often miss unexpected events when their attention is otherwise engaged, Conley still had trouble accepting that anyone else could miss what seemed so obvious to him.
The illusion of attention is so ingrained and pervasive that everyone involved in the case of Kenny Conley was operating under a false notion of how the mind works: the mistaken belief that we pay attention to—and therefore should notice and remember—much more of the world around us than we actually do. Conley himself testified that he should have seen the brutal beating of Michael Cox had he actually run right past it. In their appeal of his conviction, Conley’s lawyers tried to show that he hadn’t run past the beating, that the testimony about his presence near the beating was wrong, and that descriptions of the incident from other police officers were inaccurate. All of these arguments were founded on the assumption that Conley could only be telling the truth if he didn’t have the opportunity to see the beating. But what if, instead, in the cul-de-sac on Woodruff Way, Conley found himself in a real-life version of our gorilla experiment? He could have been right next to the beating of Cox, and even focused his eyes on it, without ever actually seeing it.
Conley was worried about Smut Brown scaling the fence and escaping, and he pursued his suspect with a single-minded focus that he described as “tunnel vision.” Conley’s prosecutor ridiculed this idea, saying that what prevented Conley from seeing the beating was not tunnel vision but video editing—“a deliberate cropping of Cox out of the picture.”14
But if Conley was sufficiently focused on Brown, in the way our subjects were focused on counting the basketball passes, it is entirely possible that he ran right past the assault and still failed to see it. If so, the only inaccurate part of Conley’s testimony was his stated belief that he should have seen Cox. What is most striking about this case is that Conley’s own testimony was the primary evidence that put him near the beating, and that evidence, combined with a misunderstanding of how the mind works, and the blue wall of silence erected by the other cops, led prosecutors to charge him with perjury and obstruction of justice. They, and the jury that convicted him, assumed that he too was protecting his comrades.
Kenny Conley’s conviction was eventually overturned on appeal and set aside in July 2005. But Conley prevailed not because the prosecutors or a judge were convinced that he actually was telling the truth. Instead, the appeals court in Boston ruled that he had been denied a fair trial because the prosecution didn’t tell his defense attorneys about an FBI memo that cast doubt on the credibility of one of the government’s witnesses.15 When the government decided not to retry him in September 2005, Conley’s legal troubles were finally over. On May 19, 2006, more than eleven years after the original incident on Woodruff Way that changed his life, Conley was reinstated as a Boston police officer—but only after being forced to redo, at age thirty-seven, the same police academy training a new recruit has to endure.16 He was granted $647,000 in back pay for the years he was off the force,17 and in 2007 he was promoted to detective.18
Throughout this book, we will present many examples and anecdotes, l
ike the story of Kenny Conley, that show how everyday illusions can have tremendous influence on our lives. However, two important caveats are in order. First, as Robert Pirsig writes in Zen and the Art of Motorcycle Maintenance, “The real purpose of scientific method is to make sure Nature hasn’t misled you into thinking you know something that you actually don’t.”19 But science can only go so far, and although it can tell us in general how galaxies form, how DNA is transcribed into proteins, and how our minds perceive and remember our world, it is nearly impotent to explain a single event or individual case. The nature of everyday illusions almost never allows for proof that any particular incident was caused entirely by a specific mental mistake. There is no certainty that Conley missed the beating because of inattentional blindness, nor is there even certainty that he missed it at all (he could have seen it and then consistently lied). Without doing a study of attention under the same conditions Conley faced (at night, running after someone climbing a fence, the danger in chasing a murder suspect, the unfamiliar surroundings, and a gang of men attacking someone), we cannot estimate the probability that Conley missed what he said he missed.
We can, however, say that the intuitions of the people who condemned and convicted him were way off the mark. What is certain is that the police investigators, the prosecutors, and the jurors, and to some extent Kenny Conley himself, were all operating under the illusion of attention and failed to consider the possibility—which we argue is a strong possibility—that Conley could have been telling the truth about both where he was and what he didn’t see on that January night in Boston.
The second important point to keep in mind is this: We use stories and anecdotes to convey our arguments because narratives are compelling, memorable, and easily understood. But people tend to believe convincing, retrospective stories about why something happened even when there is no conclusive evidence of the event’s true causes. For that reason, we try to back up all of our examples with scientific research of the highest quality, using endnotes to document our sources and provide additional information along the way.
Our goals are to show you how everyday illusions influence our thoughts, decisions, and actions, and to convince you that they have large effects on our lives. We believe that once you have considered our arguments and evidence, you will agree, and that you will think about your own mind and your own behavior much differently. We hope that you will then act accordingly. So as you read on, read critically, keeping your mind open to the possibility that it doesn’t work the way you think it does.
The Nuclear Submarine and the Fishing Boat
Do you remember the first major international incident of George W. Bush’s presidency? It happened less than a month after he took office, on February 9, 2001.20 At approximately 1:40 p.m., Commander Scott Waddle, captaining the nuclear submarine USS Greeneville near Hawaii, ordered a surprise maneuver known as an “emergency deep,” in which the submarine suddenly dives. He followed this with an “emergency main ballast tank blow,” in which high-pressure air forces water from the main ballasts, causing the submarine to surface as fast as it can. In this kind of maneuver, shown in movies like The Hunt for Red October, the bow of the submarine actually heaves out of the water. As the Greeneville zoomed toward the surface, the crew and passengers heard a loud noise, and the entire ship shook. “Jesus!” said Waddle. “What the hell was that?”
His ship had surfaced, at high speed, directly under a Japanese fishing vessel, the Ehime Maru. The Greeneville’s rudder, which had been specially reinforced for penetrating ice packs in the Arctic, sliced the fishing boat’s hull from one side to the other. Diesel fuel began to leak and the Ehime Maru took on water. Within minutes, it tipped up and sank by its stern as the people onboard scrambled forward toward the bow. Many of them reached the three lifeboats and were rescued, but three crew members and six passengers died. The Greeneville received only minor damage, and no one onboard was injured.
What went wrong? How could a modern, technologically advanced submarine, equipped with state-of-the-art sonar and manned by an experienced crew, not detect a nearly two-hundred-foot-long fishing boat so close by? In attempting to explain this accident, the National Transportation Safety Board’s fifty-nine-page report exhaustively documents all of the ways in which the officers failed to follow procedure, all of the distractions they faced in accommodating a delegation of civilian visitors, all of the errors they made along the way, and all of the miscommunication that contributed to poor tracking of the Ehime Maru’s actual position. It contains no evidence of alcohol, drugs, mental illness, fatigue, or personality conflicts influencing the crew’s actions. The report is most interesting, however, for the crucial issue it does not even attempt to resolve: why Commander Waddle and the officer of the deck failed to see the Ehime Maru when they looked through the periscope.
Before a submarine performs an emergency deep maneuver, it returns to periscope depth so the commander can make sure no other ships are in the vicinity. The Ehime Maru should have been visible through the periscope, and Commander Waddle looked right toward it, but he still missed it. Why? The NTSB report emphasized the brevity of the periscope scan, as did Dateline NBC correspondent Stone Phillips: “… had Waddle stayed on the periscope longer, or raised it higher, he might have seen the Ehime Maru. He says there is no doubt he was looking in the right direction.” None of these reports consider any other reasons why Waddle could have failed to see the nearby vessel—a failure that surprised Waddle himself. But the results of our gorilla experiment tell us that the USS Greeneville’s commanding officer, with all his experience and expertise, could indeed have looked right at another ship and just not have seen it. The key lies in what he thought he would see when he looked: As he said later, “I wasn’t looking for it, nor did I expect it.”21
Submarines rarely surface into other ships, so don’t lose sleep over the prospect on your next boat trip. But this kind of “looked but failed to see” accident is quite common on land. Perhaps you have had the experience of starting to turn out of a parking lot or a side road and then having to stop suddenly to avoid hitting a car you hadn’t seen before that moment. After accidents, drivers regularly claim, “I was looking right there and they came out of nowhere … I never saw them.”22 These situations are especially troubling because they run counter to our intuitions about the mental processes involved in attention and perception. We think we should see anything in front of us, but in fact we are aware of only a small portion of our visual world at any moment. The idea that we can look but not see is flatly incompatible with how we understand our own minds, and this mistaken understanding can lead to incautious or overconfident decisions.
In this chapter, when we talk about looking, as in “looking without seeing,” we don’t mean anything abstract or vague or metaphorical. We literally mean looking right at something. We truly are arguing that directing our eyes at something does not guarantee that we will consciously see it. A skeptic might question whether a subject in the gorilla experiment or an officer chasing a suspect or a submarine commander bringing his ship to the surface actually looked right at the unexpected object or event. To perform these tasks, though (to count the passes, pursue a suspect, or sweep the area for ships), they needed to look right where the unexpected object appeared. It turns out that there is a way, in a laboratory situation at least, to measure exactly where on a screen a person fixates their eyes (a technical way of saying “where they are looking”) at any moment. This technique, which uses a device called an “eye tracker,” can provide a continuous trace showing where and for how long a subject is looking during any period of time—such as the time of watching the gorilla video. Sports scientist Daniel Memmert of Heidelberg University ran our gorilla experiment using his eye tracker and found that the subjects who failed to notice the gorilla had spent, on average, a full second looking right at it—the same amount of time as those who did see it!23
Ben Roethlisberger’s Worst Interception
I
n February 2006, at the age of twenty-three and in just his second season as a professional football player, Ben Roethlisberger became the youngest quarterback in NFL history to win a Super Bowl. During the off-season, on June 12 of that same year, he was riding his black 2005 Suzuki motorcycle heading outbound from downtown Pittsburgh on Second Avenue.24 As he neared the intersection at Tenth Street, a Chrysler New Yorker driven by Martha Fleishman approached in the opposite direction on Second Avenue. Both vehicles had green lights when Fleishman then turned left onto Tenth Street, cutting off Roethlisberger’s motorcycle. According to witnesses, Roethlisberger was thrown from his motorcycle, hit the Chrysler’s windshield, tumbled over the roof and off the trunk, and finally landed on the street. His jaw and nose were broken, many of his teeth were knocked out, and he received a large laceration on the back of his head, as well as a number of other minor injuries. He required seven hours of emergency surgery, but considering that he wasn’t wearing a helmet, he was lucky to survive the crash at all. Fleishman had a nearly perfect driving record—the only mark against her was a speeding ticket nine years earlier. Roethlisberger was cited for not wearing a helmet and for driving without the right type of license; Fleishman was cited and fined for failing to yield. Roethlisberger eventually made a full recovery from the accident and was ready to resume his role as the starting quarterback by the season opener in September.
Accidents like this one are unfortunately common. More than half of all motorcycle accidents are collisions with another vehicle. Nearly 65 percent of those happen much like Roethlisberger’s—a car violates the motorcycle’s right-of-way, turning left in front of the motorcyclist (or turning right in countries where cars drive on the left side of the road).25 In some cases, the car turns across oncoming traffic onto a side street. In others, the car turns across a lane of traffic onto the main street. In the typical accident of this sort, the driver of the car often says something like, “I signaled to turn left, and started out when it was clear. Then something hit my car and I later saw the motorcycle and the guy lying in the street. I never saw him!” The motorcyclist in such accidents says, “All of a sudden this car pulled out in front of me. The driver was looking right at me.” This experience leads some motorcyclists to assume that car drivers violate their right-of-way intentionally—that they see the motorcyclist and turn anyway.
The Invisible Gorilla: And Other Ways Our Intuitions Deceive Us Page 2