Engineers of Dreams: Great Bridge Builders and the Spanning of America

Home > Other > Engineers of Dreams: Great Bridge Builders and the Spanning of America > Page 27
Engineers of Dreams: Great Bridge Builders and the Spanning of America Page 27

by Henry Petroski


  Othmar Ammann in 1904 (photo credit 5.1)

  Among the projects in Ammann’s division at the Pennsylvania Steel Company was the fourth bridge across New York’s East River, at Blackwell’s Island, to be known as the Queensboro Bridge. This was, of course, to be the great cantilever connecting Manhattan with the borough of Queens, and Ammann worked on it under chief engineer Frederic C. Kunz, who was in charge of construction. Ammann no doubt saw this as a rare opportunity to learn about the practical aspects of bringing to completion a bridge project almost as massive as that needed to span the Hudson. Like much of the work of engineers in subordinate positions, Ammann’s under Kunz was largely anonymous. That does not mean it was insignificant, however; when Kunz’s book, Design of Steel Bridges, was published in 1915, he would acknowledge Ammann in the preface, along with two other engineers, “for their able assistance in the preparation” of the volume. Among the many plates in that book is one showing the elevations of notable cantilever bridges, and the Queensboro, on which Ammann worked, was clearly among the most notable. Drawn to scale between the Forth Bridge and the second Quebec Bridge, then under construction, the Queensboro was clearly a distinct and significant span, regardless of what some critics would say.

  It was while the Queensboro Bridge was still under construction that the first Quebec Bridge collapsed, and Kunz, Ammann, and every other engineer in Steelton, just seventy-five miles from the Phoenix Bridge Company’s design office at Phoenixville, felt the shock. It was immediately clear that, as with all major structural failures, there would be an investigation. When C. C. Schneider, formerly with the American Bridge Company, was named to lead the investigation, Ammann, presumably through Kunz, offered his assistance. Ammann could clearly have seen this as another opportunity to be involved with one of the most significant current bridge problems, but there was also a clear advantage to his employer, the Pennsylvania Steel Company, in being as close to the investigation as possible, so that lessons learned might be applied to their own great cantilever project. Though the report that appeared under Schneider’s name owed much to Ammann, he was still an assistant, and thus did not receive the explicit formal recognition he may have deserved. He is said by hagiographers to have become “the actual boss of the study, and to this very day his report is considered as a model of thorough investigation,” but the truth of that may hinge on one’s definition of “boss.” Whatever the respective roles of Schneider, Kunz, and Ammann, after the Quebec Bridge report was published in 1908 and the Queensboro Bridge opened in 1909, they all three found themselves together in Philadelphia, in the newly constituted engineering firm of Schneider & Kunz. Ammann, who became principal assistant engineer with the firm, was clearly still a junior and not yet a named partner in engineering endeavors and enterprises. He was in a position to have assisted Kunz in designing a new Quebec Bridge in 1909, but Ammann must have been disappointed that Kunz’s span had none of the grace of the Queensboro Bridge and was not in the end selected to be built. After eight years with Kunz, Ammann sought a change, and his superiors recommended him to Gustav Lindenthal.

  Whereas Kunz had been chief engineer of construction of the Queensboro, Lindenthal, of course, was chief engineer of its design. Ammann must have admired the technical ambition of Lindenthal, whose two-decades-old proposal for a Hudson River crossing was then still the grandest dream of all, the kind of dream that had actually lured Ammann to America. Thus, when he had the opportunity to take a position with Lindenthal’s firm, he accepted it eagerly. In a characteristically unemotional understatement of the event, he wrote in his diary in the third person on July 1, 1912, “OHA started position with G.L.,” and a little ways down the page added, “Mr. L. stated: I estimate an Engineer ⅓ by his character, ⅓ by his ability and ⅓ by his experience.” Lindenthal must have estimated Ammann high in all three thirds, for before the end of three months on the job Ammann could add to his diary, on September 24, “I am appointed Assistant Chief Engineer of East River Bridge Division, New York Connecting Railroad, by Mr. G. Lindenthal.” In his new position, Ammann was to be in general charge of the office, field, and inspection work for the $20-million project, whose centerpiece was the Hell Gate Bridge across the East River.

  Ammann was Lindenthal’s chief assistant among the staff of ninety-five engineers, which included the special assistant engineer David Steinman, who would later become Ammann’s main rival. War in Europe overshadowed such nascent competitions, however. After only two years of work on the Hell Gate project, and just before erection of the arch proper was begun, Ammann left for Switzerland to help in the possible fight against Germany. Although still a Swiss citizen and reserve officer, the thirty-five-year-old lieutenant’s return to his homeland after a decade in America turned out to be less than the glorious military campaign he may have anticipated on his eastward sailing. He managed a discharge after only eighty-one days of active service, and that mostly in a supervisory capacity building fortifications on the St. Gotthard Mountains in the Swiss Alps. Barely four months after he had left Lindenthal’s office, Ammann reported back to resume work on the Hell Gate Bridge—and thereby to displace Steinman.

  Over the next year, Ammann supervised the completion of the great arch; the last rivet was driven into the bridge in September 1916. By this time, he held the position of deputy chief engineer, and he was the logical choice to draft a report on the completed project. Although national meetings of the American Society of Civil Engineers were omitted in the years 1917 and 1918 because of the war, local meetings continued to be held in metropolitan areas like New York, and on November 21, 1917, Ammann presented a full and most authoritative account of the planning and construction of the Hell Gate Bridge. It was published in the Transactions of the American Society of Civil Engineers for 1918 and awarded the Rowland Prize that year. Whereas Ammann played an anonymous role of uncertain extent in the actual authorship of Schneider’s report on the Quebec Bridge and Kunz’s book on the design of steel bridges, there can be little doubt as to who wrote the 150-page paper on the Hell Gate Bridge. Ammann does acknowledge his “obligation, for permission to present this paper and for valuable information, to Gustav Lindenthal,” but the paper carries only a single author’s name: O. H. Ammann. To Lindenthal’s credit, he did not pull rank to have his name displace Ammann’s or be added to it, nor did he squelch Ammann’s opportunity to get full credit at last for his ability to plan and execute engineering reports of uncommon clarity and style. This talent would in later years often be remarked about in popular profiles of the engineer, but it was not lost on the engineering audience either. Indeed, one member of the society, Henry Quimby of Philadelphia, closed his discussion of Ammann’s paper with some extraordinary remarks:

  The paper is an unusually satisfying one, both in the fact that it appears while the public and the professional interest in the remarkable feat is still fresh, and in that it discusses so freely the reasons for the various features of the design. The oral presentation of the subject by the author was also exceptionally felicitous, summarizing and supplementing the paper rather than repeating it by reading word for word, as is too often done with preprinted papers.

  Writing, not to mention speaking ability, is an often overlooked talent of successful engineers. There can be little doubt that John Roebling’s ability to put pen to paper made it immensely easier for him to gain political and financial support for his milestone Niagara and Brooklyn bridge projects. Eads and Cooper wrote voluminously, as did Lindenthal, though his apparent inability to keep his pen from drifting from the main objective of his words into diatribe must have taken away from the sound and otherwise convincing arguments that he advanced. Ammann, on the other hand, seems to have approached his engineering reports with all the circumspection and rationality that he did design projects, without having to sacrifice aesthetics or style in either. Later in life, he would speak often to reporters about his writing, confessing that reports were no easier to design than bridges, and that he usually
had to take his manuscripts home “and work on them until two in the morning.” Among Margot Ammann’s earliest recollections of her father was of him “bent over his desk, writing a report.” He wrote “on a block of yellow lined paper” with a pen that had a thick nib, judging from the documents that survive. Her recollection also speaks to his discipline with regard to correctness and revision: “He frequently consulted the dictionary that was always by his elbow and [made] revisions with much slashing, writing in the margins and changing of sequence by cutting paragraphs with scissors and then pasting them elsewhere in the report.” A New Jersey neighbor who was often awake to attend to a sick mother throughout the night corroborated Ammann’s work habits: “Whenever I looked over to the Ammann house, at one o’clock, three o’clock, there was always a light burning in Mr. Ammann’s study and I knew he was working.”

  Ammann would have plenty of opportunity to hone his writing skills, for he was to produce over one hundred full-length reports during his career, suggesting the large number of projects on which he worked. In the time between the completion of the Hell Gate project and the presentation of his paper on it, Ammann was principal assistant engineer to consulting and chief engineer Lindenthal for the steel superstructure, erected by the McClintic-Marshall Company of Pittsburgh, for the Sciotoville Bridge over the Ohio River. This bridge too had added considerably to Lindenthal’s reputation as among the greatest bridge builders of his age, of course, and he himself wrote the paper reporting on it. However, as opposed to the timeliness of Ammann’s report on the Hell Gate, Lindenthal’s paper came five years after the bridge was completed. Indeed, the paper’s opening sentence acknowledges that the “peculiar construction” of the bridge had “been the subject of frequent inquiries,” and offered the “detailed, although somewhat belated, description” as the “permanent record” of the project. In contrast to Ammann’s fluid and inclusive style, Lindenthal’s, in his forty-five-page paper, is jerky and contentious, if not curt at times, with statements of fact and opinion intermixed. In a section on the history of continuous truss bridges, for example, after describing Robert Stephenson’s classic Britannia Bridge, Lindenthal remarks that “too much credit cannot be given to that galaxy of early English bridge engineers,” which included Stephenson, and Lindenthal goes on to express his clear approval of their ways: “They did their own thinking; they did not wait for precedents, but created them.” Lindenthal clearly must have thought of himself, and his Hudson River Bridge, in the tradition of these engineers. He seems to have gained resolve from such a reading of history, much as Eads had found in Telford’s ideas a precedent for a great arch bridge at St. Louis.

  As was customary, Lindenthal acknowledged those who had helped with the project. In contrast with an engineer like Waddell, whose paper on the Halsted Street Lift-Bridge recognized first the politicians who made the project possible, Lindenthal made no mention of the commissioners of the bridge, the Chesapeake & Ohio Northern Railway, other than matter-of-factly in the paper’s title, and then essentially only to locate precisely the artifact itself, rather than to flatter its owners. Only the engineers and constructors were acknowledged for their assistance “in this unusual work, bristling with new problems and difficulties.” Those singled out included David Steinman, for “computations of superstructure,” but Ammann was mentioned first and foremost as “Principal Assistant Engineer in general charge.”

  Unlike the abrupt closing of Lindenthal’s paper, Ammann’s on the Hell Gate summarized in systematic list-like form “some broader engineering questions,” or lessons learned from the project. His remarks are clearly laudatory toward Lindenthal, but the reader cannot help thinking that assistants like Ammann gain in stature by their association with the chief engineer and his projects:

  A great engineering work cannot be spontaneously created in its final, perfect form, but has to grow and develop gradually, in its entirety as well as in its constitutent parts. Although the layman can only judge such a work in the light of an accomplished fact, the engineer must ever be conscious that it is only through extensive and laborious preliminary studies, and untiring efforts to improve, that he can hope to achieve a perfect work.

  In the execution of a great and complex engineering or scientific undertaking, collaboration of experts in various fields is essential, but a great structure of monumental character must be the product of an individual creative and directive mind.

  A great structure cannot be the result of a set of rules and specifications, nor of elaborate mathematical computations. Such a work requires wide experience and sound judgment, and therefore, should be entrusted only to engineers of high professional attainments and reputation.

  Lindenthal’s plan for a Hudson River crossing indeed fell into the category of “a great structure of monumental character,” but as the great engineer approached his seventieth year he had become less and less flexible about how the project might evolve with the needs of an evolving metropolitan area. The war had slowed bridge construction generally, and it was a time of inactivity for engineering firms like Gustav Lindenthal’s. This might have been an opportunity to do speculative work on the Hudson River plan, making it more economical and therefore more attractive to potential supporters, but Lindenthal apparently chose not to do that. After the Hell Gate and Sciotoville projects, there was little to do in the office even for Ammann, and Lindenthal suggested that he try to get work elsewhere until there was something for which to call him back. Nothing else was available, however, and Ammann was thinking about entering war service when Lindenthal offered him a position as manager of a clay mine jointly owned by Lindenthal himself and a New Jersey judge, later governor, George S. Silzer. Ammann subsequently admitted that “the position was not attractive,” but he “accepted it [so] as to be on hand in case Mr. Lindenthal needed my assistance.”

  Othmar Ammann spent the next few years effectively exiled in the central-New Jersey county of Middlesex, managing the obscure mine of the Such Clay Pottery Company rather than building grand steel bridges. When he took over the operation of the mine, it was unprofitable, and so his compensation was in jeopardy. However, he turned the situation around, thereby demonstrating a sound managerial sense and business acumen. His performance could hardly have been lost on Lindenthal and Silzer; the latter especially would no doubt recall it years hence.

  Standard biographical sketches of Ammann do not mention his time working at the New Jersey mine. Rather, all the years between 1912 and 1923 in his career are accounted for as being spent working for Lindenthal, as he technically was. In addition to work on the major Hell Gate and Sciotoville projects, studies for the 57th Street Bridge did in fact continue throughout that period, though in limited form. In 1920, when the war and the recession were over, questions of a Hudson River crossing again became paramount in New York and New Jersey, and Ammann was appointed assistant chief engineer of the North River Bridge Company. Lindenthal’s dream sprang from nineteenth-century assumptions about the importance of an over-water railroad link between the states, and his plans had grown to accommodate twenty vehicle lanes as well as twelve railway tracks. There were also to be terminal facilities and a moving platform for pedestrians. The estimated cost for the bridge alone, of over $200 million, was prohibitively high, and solid backing continued to be elusive. In 1921, the formation of the North River Bridge Corporation was announced, with over $250 million in capital stock, but the general feeling in banking circles at the time was that such a large capital undertaking would not be very viable. Soon, an organization known as the Hudson River Bridge and Terminal Association was incorporated, its purpose being “to obtain public support for the undertaking, projected by Gustav Lindenthal, an eminent bridge engineer, to build a great double-deck highway and railroad bridge from Manhattan to Weehawken.”

  2

  Among the complicating factors in the early 1920s in winning approval for bridging the Hudson was the alternative of vehicular tunnels, which was gaining support. Railroad
tunnels had by then long operated successfully under the Hudson, and subway tunnels under the East River had become almost unremarkable feats. There was only one principal remaining doubt as to the efficacy of going under rather than over the river: it remained to be seen whether the exhaust gases of automobile and truck traffic could be effectively removed from a subaqueous tunnel a mile or two in length. In spite of this, as early as 1918 a meeting between the New York State Bridge and Tunnel Commission and the New Jersey Interstate Bridge and Tunnel Commission resulted in a joint commission organized to promote the crossing of the Hudson River, and the preference was for a tunnel.

  The commission debated Hudson River crossings during the winter of 1918, a particularly severe one. New York Harbor was icebound, and the inability of delivery trucks to get across the river on ferries resulted in a “coal famine.” Since the joint commission had recently asked a consulting engineer to look at proposed tunnel plans and report critically on them, the time was propitious for an underwater crossing to gain support. The fact that the consulting engineer was George Washington Goethals ensured that the issue received much publicity.

  George Goethals was born in Brooklyn in 1858, but his family moved to Manhattan when the quiet and somewhat shy, studious, and yet well-liked boy was eleven. His education in New York City public schools, the City College of New York, and West Point, from which he was to graduate in 1880, would later in life give him a sense of obligation to public works, at which he would excel. Six feet tall, with blue eyes and a ruddy complexion, young Goethals was an impressive figure, and his early inclination was to follow the profession of either law or medicine. However, mathematics attracted him in school, and he became increasingly interested in engineering, leaving City College before completing his degree to take advantage of a vacancy in the Cadet Corps that had opened up at West Point. He remained at the military academy for a year after graduation, teaching astronomy, but soon afterward was assigned to work on the Columbia River and later the Ohio River, to assist in making improvements for navigation. He returned to the military academy in the late 1880s to teach civil and military engineering, and then was assigned to work on improvements on the Cumberland and Tennessee rivers, including work on the Muscle Shoals Canal, near Chattanooga, and the Colbert Shoals Lock. He served at army headquarters in Washington, D.C., for a period, in the Spanish-American War, and on various river-and-harbor improvement projects in Rhode Island and southern Massachusetts. As if this broad experience were not enough, his service on the General Staff from 1903 to 1907 gave him considerable exposure in Washington, and by then he was a natural choice to take on leadership of the Panama Canal project. No doubt sensitive to the debate as to whether the canal should be a private or a military project, Lieutenant Colonel Goethals never wore his uniform in Panama. When the canal, which had been under discussion for centuries and under construction for decades, was finally opened in 1914, Goethals was a hero, if not a legend, for his ability to complete what so many before him had started. He was promoted to major general in 1915 and retired from the army in 1916, whereupon he moved to New York to work as a consulting engineer.

 

‹ Prev