by Brian Greene
And so we are faced with a quantum-mechanical balancing act. If we use high-frequency (short wavelength) light we can locate an electron with greater precision. But high-frequency photons are very energetic and therefore sharply disturb the electron's velocity. If we use low-frequency (long wavelength) light we minimize the impact on the electron's motion, since the constituent photons have comparatively low energy, but we sacrifice precision in determining the electron's position. Heisenberg quantified this competition and found a mathematical relationship between the precision with which one measures the electron's position and the precision with which one measures its velocity. He found—in line with our discussion—that each is inversely proportional to the other: Greater precision in a position measurement necessarily entails greater imprecision in a velocity measurement, and vice versa. And of utmost importance, although we have tied our discussion to one particular means for determining the electron's whereabouts, Heisenberg showed that the trade-off between the precision of position and velocity measurements is a fundamental fact that holds true regardless of the equipment used or the procedure employed. Unlike the framework of Newton or even of Einstein, in which the motion of a particle is described by giving its location and its velocity, quantum mechanics shows that at a microscopic level you cannot possibly know both of these features with total precision. Moreover, the more precisely you know one, the less precisely you know the other. And although we have described this for electrons, the ideas directly apply to all constituents of nature.
Einstein tried to minimize this departure from classical physics by arguing that although quantum reasoning certainly does appear to limit one's knowledge of the position and velocity, the electron still has a definite position and velocity exactly as we have always thought. But during the last couple of decades theoretical progress spearheaded by the late Irish physicist John Bell and the experimental results of Alain Aspect and his collaborators have shown convincingly that Einstein was wrong. Electrons—and everything else for that matter—cannot be described as simultaneously being at such-and-such location and having such-and-such speed. Quantum mechanics shows that not only could such a statement never be experimentally verified—as explained above—but it directly contradicts other, more recently established experimental results.
In fact, if you were to capture a single electron in a big, solid box and then slowly crush the sides to pinpoint its position with ever greater precision, you would find the electron getting more and more frantic. Almost as if it were overcome with claustrophobia, the electron will go increasingly haywire—bouncing off of the walls of the box with increasingly frenetic and unpredictable speed. Nature does not allow its constituents to be cornered. In the H-Bar, where we imagine ħ to be much larger than in the real world, thereby making everyday objects directly subject to quantum effects, the ice cubes in George's and Gracie's drinks frantically rattle around as they too suffer from quantum claustrophobia. Although the H-Bar is a fantasyland—in reality, ħ is terribly small—precisely this kind of quantum claustrophobia is a pervasive feature of the microscopic realm. The motion of microscopic particles becomes increasingly wild when they are examined and confined to ever smaller regions of space.
The uncertainty principle also gives rise to a striking effect known as quantum tunneling. If you fire a plastic pellet against a ten-foot-thick concrete wall, classical physics confirms what your instincts tell you will happen: The pellet will bounce back at you. The reason is that the pellet simply does not have enough energy to penetrate such a formidable obstacle. But at the level of fundamental particles, quantum mechanics shows unequivocally that the wave functions—that is, the probability waves—of the particles making up the pellet all have a tiny piece that spills out through the wall. This means that there is a small—but not zero—chance that the pellet actually can penetrate the wall and emerge on the other side. How can this be? The reason comes down, once again, to Heisenberg's uncertainty principle.
To see this, imagine that you are completely destitute and suddenly learn that a distant relative has passed on in a far-off land, leaving you a tremendous fortune to claim. The only problem is that you don't have the money to buy a plane ticket to get there. You explain the situation to your friends: if only they will allow you to surmount the barrier between you and your new fortune by temporarily lending you the money for a ticket, you can pay them back handsomely after your return. But no one has the money to lend. You remember, though, that an old friend of yours works for an airline and you implore him with the same request. Again, he cannot afford to lend you the money but he does offer a solution. The accounting system of the airline is such that if you wire the ticket payment within 24 hours of arrival at your destination, no one will ever know that it was not paid for prior to departure. In this way you are able to claim your inheritance.
The accounting procedures of quantum mechanics are quite similar. Just as Heisenberg showed that there is a trade-off between the precision of measurements of position and velocity, he also showed that there is a similar trade-off in the precision of energy measurements and how long one takes to do the measurement. Quantum mechanics asserts that you can't say that a particle has precisely such-and-such energy at precisely such-and-such moment in time. Ever increasing precision of energy measurements require ever longer durations to carry them out. Roughly speaking, this means that the energy a particle has can wildly fluctuate so long as this fluctuation is over a short enough time scale. So, just as the accounting system of the airline "allows" you to "borrow" the money for a plane ticket provided you pay it back quickly enough, quantum mechanics allows a particle to "borrow" energy so long as it can relinquish it within a time frame determined by Heisenberg's uncertainty principle.
The mathematics of quantum mechanics shows that the greater the energy barrier, the lower the probability that this creative microscopic accounting will actually occur. But for microscopic particles facing a concrete slab, they can and sometimes do borrow enough energy to do what is impossible from the standpoint of classical physics—momentarily penetrate and tunnel through a region that they do not initially have enough energy to enter. As the objects we study become increasingly complicated, consisting of more and more particle constituents, such quantum tunneling can still occur, but it becomes very unlikely since all of the individual particles must be lucky enough to tunnel together. But the shocking episodes of George's disappearing cigar, of an ice cube passing right through the wall of a glass, and of George and Gracie's passing right through a wall of the bar, can happen. In a fantasy land such as the H-Bar, in which we imagine that ħ is large, such quantum tunneling is commonplace. But the probability rules of quantum mechanics—and, in particular, the actual smallness of ħ in the real world—show that if you walked into a solid wall every second, you would have to wait longer than the current age of the universe to have a good chance of passing through it on one of your attempts. With eternal patience (and longevity), though, you could—sooner or later—emerge on the other side.
The uncertainty principle captures the heart of quantum mechanics. Features that we normally think of as being so basic as to be beyond question—that objects have definite positions and speeds and that they have definite energies at definite moments—are now seen as mere artifacts of Planck's constant being so tiny on the scales of the everyday world. Of prime importance is that when this quantum realization is applied to the fabric of spacetime, it shows fatal imperfections in the "stitches of gravity" and leads us to the third and primary conflict physics has faced during the past century.
Chapter 5: The Need for a New Theory: General Relativity vs. Quantum Mechanics:
Our understanding of the physical universe has deepened profoundly during the past century. The theoretical tools of quantum mechanics and general relativity allow us to understand and make testable predictions about physical happenings from the atomic and subatomic realms all the way through phenomena occurring on the scales of galaxies, clusters of gal
axies, and beyond to the structure of the whole universe itself. This is a monumental achievement. It is truly inspiring that beings confined to one planet orbiting a run-of-the-mill star in the far edges of a fairly ordinary galaxy have been able, through thought and experiment, to ascertain and comprehend some of the most mysterious characteristics of the physical universe. Nevertheless, physicists by their nature will not be satisfied until they feel that the deepest and most fundamental understanding of the universe has been unveiled. This is what Stephen Hawking has alluded to as a first step toward knowing "the mind of God."1
There is ample evidence that quantum mechanics and general relativity do not provide this deepest level of understanding. Since their usual domains of applicability are so different, most situations require the use of quantum mechanics or general relativity, but not both. Under certain extreme conditions, however, where things are very massive and very small—near the central point of black holes or the whole universe at the moment of the big bang, to name two examples—we require both general relativity and quantum mechanics for proper understanding. But like the mixing of fire and gunpowder, when we try to combine quantum mechanics and general relativity, their union brings violent catastrophe. Well-formulated physical problems elicit nonsensical answers when the equations of both these theories are commingled. The nonsense often takes the form of a prediction that the quantum-mechanical probability for some process is not 20 percent or 73 percent or 91 percent but infinity. What in the world does a probability greater than one mean, let alone one that is infinite? We are forced to conclude that there is something seriously wrong. By closely examining the basic properties of general relativity and quantum mechanics, we can identify what that something is.
The Heart of Quantum Mechanics
When Heisenberg discovered the uncertainty principle, physics turned a sharp corner, never to retrace its steps. Probabilities, wave functions, interference, and quanta all involve radically new ways of seeing reality. Nevertheless, a die-hard "classical" physicist might still have hung on to a thread of hope that when all was said and done these departures would add up to a framework not too distant from old ways of thinking. But the uncertainty principle cleanly and definitively undercut any attempt to cling to the past.
The uncertainty principle tells us that the universe is a frenetic place when examined on smaller and smaller distances and shorter and shorter time scales. We saw some evidence of this in our attempt, described in the preceding chapter, to pinpoint the location of elementary particles such as electrons: By shining light of ever higher frequency on electrons, we measure their position with ever greater precision, but at a cost, since our observations become ever more disruptive. High-frequency photons have a lot of energy and therefore give the electrons a sharp "kick," significantly changing their velocities. Like the frenzy in a room full of children all of whose momentary positions you know with great accuracy but over whose velocities—the speeds and directions in which they are moving—you have almost no control, this inability to know both the positions and velocities of elementary particles implies that the microscopic realm is intrinsically turbulent.
Although this example conveys the basic relationship between uncertainty and frenzy, it actually reveals only part of the story. It might lead you to think, for instance, that uncertainty arises only when we clumsy observers of nature stumble onto the scene. This is not true. The example of an electron violently reacting to being confined in a small box by rattling around at high speed takes us a bit closer to the truth. Even without "direct hits" from an experimenter's disruptive photon, the electron's velocity severely and unpredictably changes from one moment to the next. But even this example does not fully reveal the stunning microscopic features of nature entailed by Heisenberg's discovery. Even in the most quiescent setting imaginable, such as an empty region of space, the uncertainty principle tells us that from a microscopic vantage point there is a tremendous amount of activity. And this activity gets increasingly agitated on ever smaller distance and time scales.
Quantum accounting is essential to understand this. We saw in the preceding chapter that just as you might temporarily borrow money to overcome an important financial obstacle, a particle such as an electron can temporarily borrow energy to overcome a literal physical barrier. This is true. But quantum mechanics forces us to take the analogy one important step further. Imagine someone who is a compulsive borrower and goes from friend to friend asking for money. The shorter the time for which a friend can lend him money, the larger the loan he seeks. Borrow and return, borrow and return—over and over again with unflagging intensity he takes in money only to give it back in short order. Like stock prices on a wild, roller-coaster day on Wall Street, the amount of money the compulsive borrower possesses at any given moment goes through extreme fluctuations, but when all is said and done, an accounting of his finances shows that he is no better off than when he began.
Heisenberg's uncertainty principle asserts that a similar frantic shifting back and forth of energy and momentum is occurring perpetually in the universe on microscopic distance and time intervals. Even in an empty region of space—inside an empty box, for example—the uncertainty principle says that the energy and momentum are uncertain: They fluctuate between extremes that get larger as the size of the box and the time scale over which it is examined get smaller and smaller. It's as if the region of space inside the box is a compulsive "borrower" of energy and momentum, constantly extracting "loans" from the universe and subsequently "paying" them back. But what participates in these exchanges in, for instance, a quiet empty region of space? Everything. Literally. Energy (and momentum as well) is the ultimate convertible currency. E = mc2 tells us that energy can be turned into matter and vice versa. Thus if an energy fluctuation is big enough it can momentarily cause, for instance, an electron and its antimatter companion the positron to erupt into existence, even if the region was initially empty! Since this energy must be quickly repaid, these particles will annihilate one another after an instant, relinquishing the energy borrowed in their creation. And the same is true for all of the other forms that energy and momentum can take—other particle eruptions and annihilations, wild electromagnetic-field oscillations, weak and strong force-field fluctuations—quantum-mechanical uncertainty tells us the universe is a teeming, chaotic, frenzied arena on microscopic scales. As Feynman once jested, "Created and annihilated, created and annihilated—what a waste of time."2 Since the borrowing and repaying on average cancel each other out, an empty region of space looks calm and placid when examined with all but microscopic precision. The uncertainty principle, however, reveals that macroscopic averaging obscures a wealth of microscopic activity.3 As we will see shortly, this frenzy is the obstacle to merging general relativity and quantum mechanics.
Quantum Field Theory
Over the course of the 1930s and 1940s theoretical physicists, led by the likes of Paul Dirac, Wolfgang Pauli, Julian Schwinger, Freeman Dyson, Sin-Itiro Tomonaga, and Feynman, to name a few, struggled relentlessly to find a mathematical formalism capable of dealing with this microscopic obstreperousness. They found that Schrödinger's quantum wave equation (mentioned in Chapter 4) was actually only an approximate description of microscopic physics—an approximation that works extremely well when one does not probe too deeply into the microscopic frenzy (either experimentally or theoretically), but that certainly fails if one does.
The central piece of physics that Schrödinger ignored in his formulation of quantum mechanics is special relativity. In fact, Schrödinger did try to incorporate special relativity initially, but the quantum equation to which this led him made predictions that proved to be at odds with experimental measurements of hydrogen. This inspired Schrödinger to adopt the time-honored tradition in physics of divide and conquer: Rather than trying, through one leap, to incorporate all we know about the physical universe in developing a new theory, it is often far more profitable to take many small steps that sequentially include the ne
west discoveries from the forefront of research. Schrödinger sought and found a mathematical framework encompassing the experimentally discovered wave-particle duality, but he did not, at that early stage of understanding, incorporate special relativity.4
But physicists soon realized that special relativity was central to a proper quantum-mechanical framework. This is because the microscopic frenzy requires that we recognize that energy can manifest itself in a huge variety of ways—a notion that comes from the special relativistic declaration E = mc2. By ignoring special relativity, Schrödinger's approach ignored the malleability of matter, energy, and motion.
Physicists focused their initial pathbreaking efforts to merge special relativity with quantum concepts on the electromagnetic force and its interactions with matter. Through a series of inspirational developments, they created quantum electrodynamics. This is an example of what has come to be called a relativistic quantum field theory, or a quantum field theory, for short. It's quantum because all of the probabilistic and uncertainty issues are incorporated from the outset; it's a field theory because it merges the quantum principles into the previous classical notion of a force field—in this case, Maxwell's electromagnetic field. And finally, it's relativistic because special relativity is also incorporated from the outset. (If you'd like a visual metaphor for a quantum field, you can pretty much invoke the image of a classical field—say, as an ocean of invisible field lines permeating space—but you should refine this image in two ways. First, you should envision a quantum field as composed of particulate ingredients, such as photons for the electromagnetic field. Second, you should imagine energy, in the form of particles' masses and their motion, endlessly shifting back and forth from one quantum field to another as they continually vibrate through space and time.)