by Brian Greene
This means that it's conceivable that one or more generations of physicists will devote their lives to the investigation and development of string theory without getting a shred of experimental feedback. The substantial number of physicists the world over who are vigorously pursuing string theory know that they are taking a risk: that a lifetime of effort might result in an inconclusive outcome. Undoubtedly, significant theoretical progress will continue, but will it be sufficient to overcome present hurdles and yield definitive, experimentally testable predictions? Will the indirect tests we have discussed above result in a true smoking gun for string theory? These questions are of central concern to all string theorists, but they are also questions about which nothing can really be said. Only the passage of time will reveal the answers. The beautiful simplicity of string theory, the way in which it tames the conflict between gravity and quantum mechanics, its ability to unify all of nature's ingredients, and its potential of limitless predictive power all serve to provide rich inspiration that makes the risk worth taking.
These lofty considerations have been continually reinforced by the ability of string theory to uncover remarkably new physical characteristics of a string-based universe—characteristics that reveal a subtle and deep coherence in the workings of nature. In the language introduced above, many of these are generic features that, regardless of currently unknown details, will be basic properties of a universe built of strings. Of these, the most astonishing have had a profound effect on our ever evolving understanding of space and time.
Part IV. String Theory and the Fabric of Spacetime
Chapter 10: Quantum Geometry:
In the course of about a decade, Einstein singlehandedly overthrew the centuries-old Newtonian framework and gave the world a radically new and demonstrably deeper understanding of gravity. It does not take much to get experts and nonexperts alike to gush over the sheer brilliance and monumental originality of Einstein's accomplishment in fashioning general relativity. Nevertheless, we should not lose sight of the favorable historical circumstances that strongly contributed to Einstein's success. Foremost among these are the nineteenth-century mathematical insights of Georg Bernhard Riemann that firmly established the geometrical apparatus for describing curved spaces of arbitrary dimension. In his famous 1854 inaugural lecture at the University of Göttingen, Riemann broke the chains of flat-space Euclidean thought and paved the way for a democratic mathematical treatment of geometry on all varieties of curved surfaces. It is Riemann's insights that provide the mathematics for quantitatively analyzing warped spaces such as those illustrated in Figures 3.4 and 3.6. Einstein's genius lay in recognizing that this body of mathematics was tailor-made for implementing his new view of the gravitational force. He boldly declared that the mathematics of Riemann's geometry aligns perfectly with the physics of gravity.
But now, almost a century after Einstein's tour-de-force, string theory gives us a quantum-mechanical description of gravity that, by necessity, modifies general relativity when the distances involved become as short as the Planck length. Since Riemannian geometry is the mathematical core of general relativity, this means that it too must be modified in order to reflect faithfully the new short-distance physics of string theory. Whereas general relativity asserts that the curved properties of the universe are described by Riemannian geometry, string theory asserts that this is true only if we examine the fabric of the universe on large enough scales. On scales as small as the Planck length a new kind of geometry must emerge, one that aligns with the new physics of string theory. This new geometrical framework is called quantum geometry.
Unlike the case of Riemannian geometry, there is no ready-made geometrical opus sitting on some mathematician's shelf that string theorists can adopt and put in the service of quantum geometry. Instead, physicists and mathematicians are now vigorously studying string theory and, little by little, piecing together a new branch of physics and mathematics. Although the full story has yet to be written, these investigations have already uncovered many new geometrical properties of spacetime entailed by string theory—properties that would almost certainly have thrilled even Einstein.
The Heart of Riemannian Geometry
If you jump on a trampoline, the weight of your body causes it to warp by stretching its elastic fibers. This stretching is most severe right under your body and becomes less noticeable toward the trampoline's edge. You can see this clearly if a familiar image such as the Mona Lisa is painted on the trampoline. When the trampoline is not supporting any weight, the Mona Lisa looks normal. But when you stand on the trampoline, the image of the Mona Lisa becomes distorted, especially the part directly under your body, as illustrated in Figure 10.1.
This example cuts to the heart of Riemann's mathematical framework for describing warped shapes. Riemann, building on earlier insights of the mathematicians Carl Friedrich Gauss, Nikolai Lobachevsky, Janos Bolyai, and others, showed that a careful analysis of the distances between all locations on or in an object provides a means of quantifying the extent of its curvature. Roughly speaking, the greater the (nonuniform) stretching—the greater the deviation from the distance relations on a flat shape—the greater the curvature of the object. For example, the trampoline is most significantly stretched right under your body and therefore the distance relations between points in this area are most severely distorted. This region of the trampoline, therefore, has the largest amount of curvature, in line with what you expect, since this is where the Mona Lisa suffers the greatest distortion, yielding the hint of a grimace at the corner of her customary enigmatic smile.
Einstein adopted Riemann's mathematical discoveries by giving them a precise physical interpretation. He showed, as we discussed in Chapter 3, that the curvature of spacetime embodies the gravitational force. But let's now think about this interpretation a little more closely. Mathematically, the curvature of spacetime—like the curvature of the trampoline—reflects the distorted distance relations between its points. Physically, the gravitational force felt by an object is a direct reflection of this distortion. In fact, by making the object smaller and smaller, the physics and the mathematics align ever more precisely as we get closer and closer to physically realizing the abstract mathematical concept of a point. But string theory limits how precisely Riemann's geometrical formalism can be realized by the physics of gravity, because there is a limit to how small we can make any object. Once you get down to strings, you can't go any further. The traditional notion of a point particle does not exist in string theory—an essential element in its ability to give us a quantum theory of gravity. This concretely shows us that Riemann's geometrical framework, which relies fundamentally upon distances between points, is modified on microscopic scales by string theory.
This observation has a very small effect on ordinary macroscopic applications of general relativity. In cosmological studies, for example, physicists routinely model whole galaxies as if they are points, since their size, in relation to the whole of the universe, is extremely tiny. For this reason, implementing Riemann's geometrical framework in this crude manner proves to be a very accurate approximation, as evidenced by the success of general relativity in a cosmological context. But in the ultramicroscopic realm, the extended nature of the string ensures that Riemann's geometry simply will not be the right mathematical formalism. Instead, as we will, now see, it must be replaced by the quantum geometry of string theory, leading to dramatically new and unexpected properties.
A Cosmological Playground
According to the big bang model of cosmology, the whole of the universe violently emerged from a singular cosmic explosion, some 15 or so billion years ago. Today, as originally discovered by Hubble, we can see that the "debris" from this explosion, in the form of many billions of galaxies, is still streaming outward. The universe is expanding. We do not know whether this cosmic growth will continue forever or if there will come a time when the expansion slows to a halt and then reverses itself, leading to a cosmic implosion. Astro
nomers and astrophysicists are trying to settle this question experimentally, since the answer turns on something that in principle can be measured: the average density of matter in the universe.
If the average matter density exceeds a so-called critical density of about a hundredth of a billionth of a billionth of a billionth (10-29) of a gram per cubic centimeter—about five hydrogen atoms for every cubic meter of the universe—then a large enough gravitational force will permeate the cosmos to halt and reverse the expansion. If the average matter density is less than the critical value, the gravitational attraction will be too weak to stop the expansion, which will continue forever. (Based upon your own observations of the world, you might think that the average mass density of the universe greatly exceeds the critical value. But bear in mind that matter—like money—tends to clump. Using the average mass density of the earth, or the solar system, or even the Milky Way galaxy as an indicator for that of the whole universe would be like using Bill Gates's net worth as an indicator of the average earthling's finances. Just as there are many people whose net worth pales in comparison to that of Bill Gates, thereby diminishing the average enormously, there is a lot of nearly empty space between the galaxies that drastically lowers the overall average matter density.)
By carefully studying the distribution of galaxies throughout space, astronomers can get a pretty good handle on the average amount of visible matter in the universe. This turns out to be significantly less than the critical value. But there is strong evidence, of both theoretical and experimental origin, that the universe is permeated with dark matter. This is matter that does not participate in the processes of nuclear fusion that powers stars and hence does not give off light; it is therefore invisible to the astronomer's telescope. No one has figured out the identity of the dark matter, let alone the precise amount that exists. The fate of our presently expanding universe, therefore, is as yet unclear.
Just for argument's sake, let's assume that the mass density does exceed the critical value and that someday in the distant future the expansion will stop and the universe will begin to collapse upon itself. All galaxies will start to approach one another slowly, and then as time goes by, their speed of approach will increase until they rush together at blinding speed. You need to picture the whole of the universe squeezing together into an ever shrinking cosmic mass. As in Chapter 3, from a maximum size of many billions of light-years, the universe will shrink to millions of light-years, every moment gaining speed as everything is crushed together to the size of a single galaxy, and then to the size of a single star, a planet, and down to the size of an orange, a pea, a grain of sand, and further, according to general relativity, to the size of a molecule, an atom, and in a final inexorable cosmic crunch to no size at all. According to conventional theory, the universe began with a bang from an initial state of zero size, and if it has enough mass, it will end with a crunch to a similar state of ultimate cosmic compression.
But when the distance scales involved are around the Planck length or less, quantum mechanics invalidates the equations of general relativity, as we are now well aware. We must instead make use of string theory. And so, whereas Einstein's general relativity allows the geometrical form of the universe to get arbitrarily small—in exactly the same way that the mathematics of Riemannian geometry allows an abstract shape to take on as small a size as the intellect can imagine—we are led to ask how string theory modifies the picture. As we shall now see, there is evidence that string theory once again sets a lower limit to physically accessible distance scales and, in a remarkably novel way, proclaims that the universe cannot be squeezed to a size shorter than the Planck length in any of its spatial dimensions.
Based on the familiarity you now have with string theory, you might be tempted to hazard a guess as to how this comes about. After all, you might argue that no matter how many points you pile up on top of each other—point particles that is—their combined volume is still zero. By contrast, if these particles are really strings, collapsed together in completely random orientations, they will fill out a nonzero-sized blob, roughly like a Planck-sized ball of entangled rubber bands. If you made this argument, you would be on the right track, but you would be missing significant, subtle features that string theory elegantly employs to suggest a minimum size to the universe. These features serve to emphasize, in a concrete manner, the new stringy physics that comes into play and its resultant impact on the geometry of spacetime.
To explain these important aspects, let's first call upon an example that pares away extraneous details without sacrificing the new physics. Instead of considering all ten of the spacetime dimensions of string theory—or even the four extended spacetime dimensions we are familiar with—let's go back to the Garden-hose universe. We originally introduced this two-spatial-dimension universe in Chapter 8 in a prestring context to explain aspects of Kaluza's and Klein's insights in the 1920s. Let's now use it as a "cosmological playground" to explore the properties of string theory in a simple setting; we will shortly use the insights we gain to better understand all of the spatial dimensions string theory requires. Toward this end, we imagine that the circular dimension of the Garden-hose universe starts out nice and plump but then shrinks to shorter and shorter size, approaching the form of Lineland—a simplified, partial version of the big crunch.
The question we seek to answer is whether the geometrical and physical properties of this cosmic collapse have features that markedly differ between a universe based on strings and one based on point particles.
The Essential New Feature
We do not have to search far to find the essential new string physics. A point particle moving in this two-dimensional universe can execute the kinds of motion illustrated in Figure 10.2: It can move along the extended dimension of the Garden-hose, it can move along the curled-up part of the Garden-hose, or any combination of the two. A loop of string can undergo similar motion, with one difference being that it oscillates as it moves around on the surface, as shown in Figure 10.3(a). This is a distinction we have already discussed in some detail: The oscillations of the string imbue it with characteristics such as mass and force charges. Although a crucial aspect of string theory, this is not our present focus, since we already understand its physical implications.
Instead, our present interest is in another difference between point-particle and string motion, a difference directly dependent on the shape of the space through which the string is moving. Since the string is an extended object, there is another possible configuration beyond those already mentioned: It can wrap around—lasso, so to speak—the circular part of the Garden-hose universe, as shown in Figure 10.3(b).1 The string will continue to slide around and oscillate, but it will do so in this extended configuration. In fact, the string can wrap around the circular part of the space any number of times, as also shown in Figure 10.3(b), and again will execute oscillatory motion as it slides around. When a string is in such a wrapped configuration, we say that it is in a winding mode of motion. Clearly, being in a winding mode is a possibility inherent to strings. There is no point-particle counterpart. We now seek to understand the implications of this qualitatively new kind of string motion on the string itself as well as on the geometrical properties of the dimension it wraps.
Throughout our previous discussion of string motion, we have focused on unwound strings. Strings that wrap around a circular component of space share almost all of the same properties as the strings we have studied. Their oscillations, just as those of their unwound counterparts, contribute strongly to their observed properties. The essential difference is that a wrapped string has a minimum mass, determined by the size of the circular dimension and the number of times it wraps around. The string's oscillatory motion determines a contribution in excess of this minimum.
It is not difficult to understand the origin of this minimum mass. A wound string has a minimum length determined by the circumference of the circular dimension and the number of times the string encircles it
. The minimum length of a string determines its minimum mass: The longer this length, the greater the mass, since there is more of it. Since the circumference of a circle is proportional to its radius, the minimum winding-mode masses are proportional to the radius of the circle being wrapped. By using Einstein's E = mc2 relating mass to energy, we can also say that the energy bound in a wound string is proportional to the radius of the circular dimension. (Unwrapped strings also have a tiny minimum length since if they didn't, we would be back in the realm of point particles. The same reasoning might lead to the conclusion that even unwrapped strings have a minuscule yet nonzero minimum mass. In a sense this is true, but the quantum-mechanical effects encountered in Chapter 6—remember The Price Is Right, again—are able to exactly cancel this contribution to the mass. This is how, we recall, unwrapped strings can yield the zero-mass photon, graviton, and the other massless or near-massless particles, for example. Wrapped strings are different in this regard.)
How does the existence of wrapped string configurations affect the geometrical properties of the dimension around which the strings wind? The answer, first recognized in 1984 by the Japanese physicists Keiji Kikkawa and Masami Yamasaki, is bizarre and remarkable.
Let's consider the last cataclysmic stages of our variant on the big crunch in the Garden-hose universe. As the radius of the circular dimension shrinks to the Planck length and, in the mold of general relativity, continues to shrink to yet smaller lengths, string theory insists upon a radical reinterpretation of what actually happens. String theory claims that all physical processes in the Garden-hose universe in which the radius of the circular dimension is shorter than the Planck length and is decreasing are absolutely identical to physical processes in which the circular dimension is longer than the Planck length and increasing! This means that as the circular dimension tries to collapse through the Planck length and head toward ever smaller size, its attempts are made futile by string theory, which turns the tables on geometry. String theory shows that this evolution can be rephrased—exactly reinterpreted—as the circular dimension shrinking down to the Planck length and then proceeding to expand. String theory rewrites the laws of short-distance geometry so that what previously appeared to be complete cosmic collapse is now seen to be a cosmic bounce. The circular dimension can shrink to the Planck-length. But because of the winding modes, attempts to shrink further actually result in expansion. Let's see why.