Love and Math

Home > Other > Love and Math > Page 1
Love and Math Page 1

by Frenkel, Edward




  Love and Math

  LOVE and MATH

  The Heart of Hidden Reality

  Edward Frenkel

  BASIC BOOKS

  A Member of the Perseus Books Group

  New York

  Copyright © 2013 by Edward Frenkel

  Published by Basic Books, A Member of the Perseus Books Group

  All rights reserved. No part of this book may be reproduced in any manner whatsoever without written permission except in the case of brief quotations embodied in critical articles and reviews. For information, address Basic Books, 250 West 57th Street, 15th Floor, New York, NY 10107-1307.

  Books published by Basic Books are available at special discounts for bulk purchases in the United States by corporations, institutions, and other organizations. For more information, please contact the Special Markets Department at the Perseus Books Group, 2300 Chestnut Street, Suite 200, Philadelphia, PA 19103, or call (800) 810-4145, ext. 5000, or e-mail [email protected].

  Library of Congress Cataloging-in-Publication Data

  Frenkel, Edward, 1968– author.

  Love and math : the heart of hidden reality / Edward Frenkel.

  pages cm

  Includes bibliographical references and index.

  ISBN 978-0-465-06995-8 (e-book) 1. Frenkel, Edward, 1968– 2. Mathematicians–United States–Biography. 3. Mathematics–Miscellanea. I. Title.

  QA29.F725F74 2013

  510.92–dc23

  [B]

  2013017372

  10 9 8 7 6 5 4 3 2 1

  For my parents

  Contents

  Preface

  A Guide for the Reader

  1A Mysterious Beast

  2The Essence of Symmetry

  3The Fifth Problem

  4Kerosinka

  5Threads of the Solution

  6Apprentice Mathematician

  7The Grand Unified Theory

  8Magic Numbers

  9Rosetta Stone

  10Being in the Loop

  11Conquering the Summit

  12Tree of Knowledge

  13Harvard Calling

  14Tying the Sheaves of Wisdom

  15A Delicate Dance

  16Quantum Duality

  17Uncovering Hidden Connections

  18Searching for the Formula of Love

  Epilogue

  Acknowledgments

  Notes

  Glossary of Terms

  Index

  Preface

  There’s a secret world out there. A hidden parallel universe of beauty and elegance, intricately intertwined with ours. It’s the world of mathematics. And it’s invisible to most of us. This book is an invitation to discover this world.

  Consider this paradox: On the one hand, mathematics is woven in the very fabric of our daily lives. Every time we make an online purchase, send a text message, do a search on the Internet, or use a GPS device, mathematical formulas and algorithms are at play. On the other hand, most people are daunted by math. It has become, in the words of poet Hans Magnus Enzensberger, “a blind spot in our culture – alien territory, in which only the elite, the initiated few have managed to entrench themselves.” It’s rare, he says, that we “encounter a person who asserts vehemently that the mere thought of reading a novel, or looking at a picture, or seeing a movie causes him insufferable torment,” but “sensible, educated people” often say “with a remarkable blend of defiance and pride” that math is “pure torture” or a “nightmare” that “turns them off.”

  How is this anomaly possible? I see two main reasons. First, mathematics is more abstract than other subjects, hence not as accessible. Second, what we study in school is only a tiny part of math, much of it established more than a millennium ago. Mathematics has advanced tremendously since then, but the treasures of modern math have been kept hidden from most of us.

  What if at school you had to take an “art class” in which you were only taught how to paint a fence? What if you were never shown the paintings of Leonardo da Vinci and Picasso? Would that make you appreciate art? Would you want to learn more about it? I doubt it. You would probably say something like this: “Learning art at school was a waste of my time. If I ever need to have my fence painted, I’ll just hire people to do this for me.” Of course, this sounds ridiculous, but this is how math is taught, and so in the eyes of most of us it becomes the equivalent of watching paint dry. While the paintings of the great masters are readily available, the math of the great masters is locked away.

  However, it’s not just the aesthetic beauty of math that’s captivating. As Galileo famously said, “The laws of Nature are written in the language of mathematics.” Math is a way to describe reality and figure out how the world works, a universal language that has become the gold standard of truth. In our world, increasingly driven by science and technology, mathematics is becoming, ever more, the source of power, wealth, and progress. Hence those who are fluent in this new language will be on the cutting edge of progress.

  One of the common misconceptions about mathematics is that it can only be used as a “toolkit”: a biologist, say, would do some field work, collect data, and then try to build a mathematical model fitting these data (perhaps, with some help from a mathematician). While this is an important mode of operation, math offers us a lot more: it enables us to make groundbreaking, paradigm-shifting leaps that we couldn’t make otherwise. For example, Albert Einstein was not trying to fit any data into equations when he understood that gravity causes our space to curve. In fact, there was no such data. No one could even imagine at the time that our space is curved; everyone “knew” that our world was flat! But Einstein understood that this was the only way to generalize his special relativity theory to non-inertial systems, coupled with his insight that gravity and acceleration have the same effect. This was a high-level intellectual exercise within the realm of math, one in which Einstein relied on the work of a mathematician, Bernhard Riemann, completed fifty years earlier. The human brain is wired in such a way that we simply cannot imagine curved spaces of dimension greater than two; we can only access them through mathematics. And guess what, Einstein was right – our universe is curved, and furthermore, it’s expanding. That’s the power of mathematics I am talking about!

  Many examples like this may be found, and not only in physics, but in other areas of science (we will discuss some of them below). History shows that science and technology are transformed by mathematical ideas at an accelerated pace; even mathematical theories that are initially viewed as abstract and esoteric later become indispensable for applications. Charles Darwin, whose work at first did not rely on math, later wrote in his autobiography: “I have deeply regretted that I did not proceed far enough at least to understand something of the great leading principles of mathematics, for men thus endowed seem to have an extra sense.” I take it as prescient advice to the next generations to capitalize on mathematics’ immense potential.

  When I was growing up, I wasn’t aware of the hidden world of mathematics. Like most people, I thought math was a stale, boring subject. But I was lucky: in my last year of high school I met a professional mathematician who opened the magical world of math to me. I learned that mathematics is full of infinite possibilities as well as elegance and beauty, just like poetry, art, and music. I fell in love with math.

  Dear reader, with this book I want to do for you what my teachers and mentors did for me: unlock the power and beauty of mathematics, and enable you to enter this magical world the way I did, even if you are the sort of person who has never used the words “math” and “love” in the same sentence. Mathematics will get under your skin just like it did under mine, and your worldview will never be the same.

  Mathematical knowledge is unlike an
y other knowledge. While our perception of the physical world can always be distorted, our perception of mathematical truths can’t be. They are objective, persistent, necessary truths. A mathematical formula or theorem means the same thing to anyone anywhere – no matter what gender, religion, or skin color; it will mean the same thing to anyone a thousand years from now. And what’s also amazing is that we own all of them. No one can patent a mathematical formula, it’s ours to share. There is nothing in this world that is so deep and exquisite and yet so readily available to all. That such a reservoir of knowledge really exists is nearly unbelievable. It’s too precious to be given away to the “initiated few.” It belongs to all of us.

  One of the key functions of mathematics is the ordering of information. This is what distinguishes the brush strokes of Van Gogh from a mere blob of paint. With the advent of 3D printing, the reality we are used to is undergoing a radical transformation: everything is migrating from the sphere of physical objects to the sphere of information and data. We will soon be able to convert information into matter on demand by using 3D printers just as easily as we now convert a PDF file into a book or an MP3 file into a piece of music. In this brave new world, the role of mathematics will become even more central: as the way to organize and order information, and as the means to facilitate the conversion of information into physical reality.

  In this book, I will describe one of the biggest ideas to come out of mathematics in the last fifty years: the Langlands Program, considered by many as the Grand Unified Theory of mathematics. It’s a fascinating theory that weaves a web of tantalizing connections between mathematical fields that at first glance seem to be light years apart: algebra, geometry, number theory, analysis, and quantum physics. If we think of those fields as continents in the hidden world of mathematics, then the Langlands Program is the ultimate teleportation device, capable of getting us instantly from one of them to another, and back.

  Launched in the late 1960s by Robert Langlands, the mathematician who currently occupies Albert Einstein’s office at the Institute for Advanced Study in Princeton, the Langlands Program had its roots in a groundbreaking mathematical theory of symmetry. Its foundations were laid two centuries ago by a French prodigy, just before he was killed in a duel, at age twenty. It was subsequently enriched by another stunning discovery, which not only led to the proof of Fermat’s Last Theorem, but revolutionized the way we think about numbers and equations. Yet another penetrating insight was that mathematics has its own Rosetta stone and is full of mysterious analogies and metaphors. Following these analogies as creeks in the enchanted land of math, the ideas of the Langlands Program spilled into the realms of geometry and quantum physics, creating order and harmony out of seeming chaos.

  I want to tell you about all this to expose the sides of mathematics we rarely get to see: inspiration, profound ideas, startling revelations. Mathematics is a way to break the barriers of the conventional, an expression of unbounded imagination in the search for truth. Georg Cantor, creator of the theory of infinity, wrote: “The essence of mathematics lies in its freedom.” Mathematics teaches us to rigorously analyze reality, study the facts, follow them wherever they lead. It liberates us from dogmas and prejudice, nurtures the capacity for innovation. It thus provides tools that transcend the subject itself.

  These tools can be used for good and for ill, forcing us to reckon with math’s real-world effects. For example, the global economic crisis was caused to a large extent by the widespread use of inadequate mathematical models in the financial markets. Many of the decision makers didn’t fully understand these models due to their mathematical illiteracy, but were arrogantly using them anyway – driven by greed – until this practice almost wrecked the entire system. They were taking unfair advantage of the asymmetric access to information and hoping that no one would call their bluff because others weren’t inclined to ask how these mathematical models worked either. Perhaps, if more people understood how these models functioned, how the system really worked, we wouldn’t have been fooled for so long.

  As another example, consider this: in 1996, a commission appointed by the U.S. government gathered in secret and altered a formula for the Consumer Price Index, the measure of inflation that determines the tax brackets, Social Security, Medicare, and other indexed payments. Tens of millions of Americans were affected, but there was little public discussion of the new formula and its consequences. And recently there was another attempt to exploit this arcane formula as a backdoor on the U.S. economy.1

  Far fewer of these sorts of backroom deals could be made in a mathematically literate society. Mathematics equals rigor plus intellectual integrity times reliance on facts. We should all have access to the mathematical knowledge and tools needed to protect us from arbitrary decisions made by the powerful few in an increasingly math-driven world. Where there is no mathematics, there is no freedom.

  Mathematics is as much part of our cultural heritage as art, literature, and music. As humans, we have a hunger to discover something new, reach new meaning, understand better the universe and our place in it. Alas, we can’t discover a new continent like Columbus or be the first to set foot on the Moon. But what if I told you that you don’t have to sail across an ocean or fly into space to discover the wonders of the world? They are right here, intertwined with our present reality. In a sense, within us. Mathematics directs the flow of the universe, lurks behind its shapes and curves, holds the reins of everything from tiny atoms to the biggest stars.

  This book is an invitation to this rich and dazzling world. I wrote it for readers without any background in mathematics. If you think that math is hard, that you won’t get it, if you are terrified by math, but at the same time curious whether there is something there worth knowing – then this book is for you.

  There is a common fallacy that one has to study mathematics for years to appreciate it. Some even think that most people have an innate learning disability when it comes to math. I disagree: most of us have heard of and have at least a rudimentary understanding of such concepts as the solar system, atoms and elementary particles, the double helix of DNA, and much more, without taking courses in physics and biology. And nobody is surprised that these sophisticated ideas are part of our culture, our collective consciousness. Likewise, everybody can grasp key mathematical concepts and ideas, if they are explained in the right way. To do this, it is not necessary to study math for years; in many cases, we can cut right to the point and jump over tedious steps.

  The problem is: while the world at large is always talking about planets, atoms, and DNA, chances are no one has ever talked to you about the fascinating ideas of modern math, such as symmetry groups, novel numerical systems in which 2 and 2 isn’t always 4, and beautiful geometric shapes like Riemann surfaces. It’s like they keep showing you a little cat and telling you that this is what a tiger looks like. But actually the tiger is an entirely different animal. I’ll show it to you in all of its splendor, and you’ll be able to appreciate its “fearful symmetry,” as William Blake eloquently said.

  Don’t get me wrong: reading this book won’t by itself make you a mathematician. Nor am I advocating that everyone should become a mathematician. Think about it this way: learning a small number of chords will enable you to play quite a few songs on a guitar. It won’t make you the world’s best guitar player, but it will enrich your life. In this book I will show you the chords of modern math, which have been hidden from you. And I promise that this will enrich your life.

  One of my teachers, the great Israel Gelfand, used to say: “People think they don’t understand math, but it’s all about how you explain it to them. If you ask a drunkard what number is larger, 2/3 or 3/5, he won’t be able to tell you. But if you rephrase the question: what is better, 2 bottles of vodka for 3 people or 3 bottles of vodka for 5 people, he will tell you right away: 2 bottles for 3 people, of course.”

  My goal is to explain this stuff to you in terms that you will understand.

  I
will also talk about my experience of growing up in the former Soviet Union, where mathematics became an outpost of freedom in the face of an oppressive regime. I was denied entrance to Moscow State University because of the discriminatory policies of the Soviet Union. The doors were slammed shut in front of me. I was an outcast. But I didn’t give up. I would sneak into the University to attend lectures and seminars. I would read math books on my own, sometimes late at night. And in the end, I was able to hack the system. They didn’t let me in through the front door; I flew in through a window. When you are in love, who can stop you?

  Two brilliant mathematicians took me under their wings and became my mentors. With their guidance, I started doing mathematical research. I was still a college student, but I was already pushing the boundaries of the unknown. This was the most exciting time of my life, and I did it even though I was sure that the discriminatory policies would never allow me to have a job as a mathematician in the Soviet Union.

  But there was a surprise in store: my first mathematical papers were smuggled abroad and became known, and I got invited to Harvard University as a Visiting Professor at age twenty-one. Miraculously, at exactly the same time perestroika in the Soviet Union lifted the iron curtain, and citizens were allowed to travel abroad. So there I was, a Harvard professor without a Ph.D., hacking the system once again. I continued on my academic path, which led me to research on the frontiers of the Langlands Program and enabled me to participate in some of the major advances in this area during the last twenty years. In what follows, I will describe spectacular results obtained by brilliant scientists as well as what happened behind the scenes.

  This book is also about love. Once, I had a vision of a mathematician discovering the “formula of love,” and this became the premise of a film Rites of Love and Math, which I will talk about later in the book. Whenever I show the film, someone always asks: “Does a formula of love really exist?”

 

‹ Prev