by Tim Folger
Knoll noted that the world can change a lot without producing huge losses; ice ages, for instance, come and go. "What the geo logical record tells us is that it's time to worry when the rate of change is fast," he told me. In the case of the end-Permian extinction, Knoll and many other researchers believe that the trigger was a sudden burst of volcanic activity; a plume of hot mantle rock from deep in the Earth sent nearly a million cubic miles' worth of flood basalts streaming over what is now Siberia. The eruption re-leased enormous quantities of carbon dioxide, which presumably led—then as now—to global warming and to significant changes in ocean chemistry.
"CO2 is a paleontologist's dream," Knoll told me. "It can kill things directly by physiological effects, of which ocean acidification is the best known, and it can kill things by changing the climate. If it gets warmer faster than you can migrate, you're in trouble."
In the end, the most deadly aspect of human activity may simply be the pace of it. Just in the past century, CO2 levels in the atmosphere have changed by as much—100 parts per million—as they normally do in a 100,000-year glacial cycle. Meanwhile, the drop in ocean pH levels that has occurred over the past fifty years may well exceed anything that happened in the seas during the previous 50 million. In a single afternoon, a pathogen like Bd can move, via United or American Airlines, halfway around the world. Before man entered the picture, such a migration would have required hundreds, if not thousands, of years—if, indeed, it could have been completed at all.
Currently, a third of all amphibian species, nearly a third of reef-building corals, a quarter of all mammals, and an eighth of all birds are classified as "threatened with extinction." These estimates do not include the species that humans have already wiped out or the species for which there are insufficient data. Nor do the figures take into account the projected effects of global warming or ocean acidification. Nor, of course, can they anticipate the kinds of sudden, terrible collapses that are becoming almost routine.
I asked Knoll to compare the current situation with past extinction events. He told me that he didn't want to exaggerate recent losses or to suggest that an extinction on the order of the end-Cretaceous or end-Permian was imminent. At the same time, he noted, when the asteroid hit the Yucatán "it was one terrible afternoon." He went on, "But it was a short-term event, and then things started getting better. Today, it's not like you have a stress and the stress is relieved and recovery starts. It gets bad and then it keeps being bad, because the stress doesn't go away. Because the stress is us."
Aeolus Cave, in Dorset, Vermont, is believed to be the largest bat hibernaculum in New England; it is estimated that before white nose hit, more than 200,000 bats—some from as far away as Ontario and Rhode Island—came to spend the winter there.
In late February, I went with Hicks to visit Aeolus. In the parking lot of the local general store, we met up with officials from the Vermont Fish and Wildlife Department, who had organized the trip. The entrance to Aeolus is about a mile and a half from the nearest road, up a steep, wooded hillside. This time, we approached by snowmobile. The temperature outside was about 25 degrees—far too low for bats to be active—but when we got near the entrance we could, once again, see bats fluttering around. The most senior of the Vermont officials, Scott Darling, announced that we'd all have to put on latex gloves and Tyvek suits before proceeding. At first, this seemed to me to be paranoid; soon, however, I came to see the sense of it.
Aeolus is a marble cave that was created by water flow over the course of thousands of years. The entrance is a large, nearly horizontal tunnel at the bottom of a small hollow. To keep people out, the Nature Conservancy, which owns the cave, has blocked off the opening with huge iron slats, so that it looks like the gate of a medieval fortress. With a key, one of the slats can be removed; this creates a narrow gap that can be crawled (or slithered) through. Despite the cold, there was an awful smell emanating from the cave—half game farm, half garbage dump. When it was my turn, I squeezed through the gap and immediately slid on the ice into a pile of dead bats. The scene, in the dimness, was horrific. There were giant icicles hanging from the ceiling, and from the floor large knobs of ice rose up, like polyps. The ground was covered with dead bats; some of the ice knobs, I noticed, had bats frozen into them. There were torpid bats roosting on the ceiling and also wide-awake ones, which would take off and fly by or, sometimes, right into us.
Why bat corpses pile up in some places, while in others they get eaten or in some other way disappear, is unclear. Hicks speculated that the weather conditions at Aeolus were so harsh that the bats didn't even make it out of the cave before dropping dead. He and Darling had planned to do a count of the bats in the first chamber of the cave, known as Guano Hall, but this plan was soon abandoned, and it was decided just to collect specimens. Darling explained that the specimens would be going to the American Museum of Natural History, so that there would at least be a record of the bats that had once lived in Aeolus. "This may be one of the last opportunities," he said. In contrast to a mine, which has been around at most for a few centuries, Aeolus, he pointed out, has existed for millennia. It's likely that bats have been hibernating there, generation after generation, since the end of the last ice age.
"That's what makes this so dramatic—it's breaking the evolutionary chain," Darling said.
He and Hicks began picking dead bats off the ground. Those which were too badly decomposed were tossed back; those which were more or less intact were sexed and placed in two-quart plastic bags. I helped out by holding open the bag for females. Soon it was full and another one was started. It struck me, as I stood there holding a bag filled with several dozen stiff, almost weightless bats, that I was watching mass extinction in action.
Several more bags were collected. When the specimen count hit somewhere around five hundred, Darling decided that it was time to go. Hicks hung back, saying that he wanted to take some pictures. In the hours we had been slipping around the cave, the carnage had grown even more grotesque; many of the dead bats had been crushed and now there was blood oozing out of them. As I made my way up toward the entrance, Hicks called after me: "Don't step on any dead bats." It took me a moment to realize that he was joking.
PART FIVE
The Environment: Small Blessings
ROBERT KUNZIG Scraping Bottom
FROM National Geographic
ONE DAY IN 1963, when Jim Boucher was seven, he was out working the trapline with his grandfather a few miles south of the Fort McKay First Nation reserve on the Athabasca River in northern Alberta. The country there is wet, rolling fen, dotted with lakes, dissected by streams, and draped in a cover of skinny, stunted trees—it's part of the boreal forest that sweeps right across Canada, covering more than a third of the country. In 1963 that forest was still mostly untouched. The government had not yet built a gravel road into Fort McKay; you got there by boat or in the winter by dogsled. The Chipewyan and Cree Indians there—Boucher is a Chipewyan—were largely cut off from the outside world. For food they hunted moose and bison; they fished the Athabasca for walleye and whitefish; they gathered cranberries and blueberries. For income they trapped beaver and mink. Fort McKay was a small fur trading post. It had no gas, electricity, telephone, or running water. Those didn't come until the 1970s and 1980s.
In Boucher's memory, though, the change begins that day in 1963, on the long trail his grandfather used to set his traps, near a place called Mildred Lake. Generations of his ancestors had worked that trapline. "These trails had been here thousands of years," Boucher said one day last summer, sitting in his spacious and tasteful corner office in Fort McKay. His golf putter stood in one corner; Mozart played softly on the stereo. "And that day, all of a sudden, we came upon this clearing. A huge clearing. There had been no notice. In the 1970s they went in and tore down my grandfather's cabin—with no notice or discussion." That was Boucher's first encounter with the oil sands industry. It's an industry that has utterly transformed this part of northeastern A
lberta in just the past few years, with astonishing speed. Boucher is surrounded by it now and immersed in it himself.
Where the trapline and the cabin once were, and the forest, there is now a large open-pit mine. Here Syncrude, Canada's largest oil producer, digs bitumen-laced sand from the ground with electric shovels five stories high, then washes the bitumen off the sand with hot water and sometimes caustic soda. Next to the mine, flames flare from the stacks of an "upgrader," which cracks the tarry bitumen and converts it into Syncrude Sweet Blend, a synthetic crude that travels down a pipeline to refineries in Edmonton, Alberta; Ontario; and the United States. Mildred Lake, meanwhile, is now dwarfed by its neighbor, the Mildred Lake Settling Basin, a four-square-mile lake of toxic mine tailings. The sand dike that contains it is by volume one of the largest dams in the world.
Nor is Syncrude alone. Within a twenty-mile radius of Boucher's office are a total of six mines that produce nearly three-quarters of a million barrels of synthetic crude oil a day; and more are in the pipeline. Wherever the bitumen layer lies too deep to be strip-mined, the industry melts it in situ with copious amounts of steam, so that it can be pumped to the surface. The industry has spent more than $50 billion on construction during the past decade, including some $20 billion in 2008 alone. Before the collapse in oil prices in the fall of 2008, it was forecasting another $100 billion over the next few years and a doubling of production by 2015, with most of that oil flowing through new pipelines to the United States. The economic crisis has put many expansion projects on hold, but it has not diminished the long-term prospects for the oil sands. In mid-November, the International Energy Agency released a report forecasting $120-a-barrel oil in 2030—a price that would more than justify the effort it takes to get oil from oil sands.
Nowhere on Earth is more earth being moved these days than in the Athabasca Valley. To extract each barrel of oil from a surface mine, the industry must first cut down the forest, then remove an average of two tons of peat and dirt that lie above the oil sands layer, then two tons of the sand itself. It must heat several barrels of water to strip the bitumen from the sand and upgrade it, and afterward it discharges contaminated water into tailings ponds like the one near Mildred Lake. They now cover around fifty square miles. Last April some five hundred migrating ducks mistook one of those ponds, at a newer Syncrude mine north of Fort McKay, for a hospitable stopover, landed on its oily surface, and died. The incident stirred international attention—Greenpeace broke into the Syncrude facility and hoisted a banner of a skull over the pipe discharging tailings, along with a sign that read WORLD'S DIRTIEST OIL: STOP THE TAR SANDS.
The United States imports more oil from Canada than from any other nation, about 19 percent of its total foreign supply, and around half of that now comes from the oil sands. Anything that reduces our dependence on Middle Eastern oil, many Americans would say, is a good thing. But clawing and cooking one barrel of crude from the oil sands emits as much as three times more carbon dioxide than letting one gush from the ground in Saudi Arabia. The oil sands are still a tiny part of the world's carbon problem—they account for less than a tenth of one percent of global CO2 emissions—but to many environmentalists they are the thin end of the wedge, the first step along a path that could lead to other, even dirtier sources of oil: producing it from oil shale or coal. "Oil sands represent a decision point for North America and the world," says Simon Dyer of the Pembina Institute, a moderate and widely respected Canadian environmental group. "Are we going to get serious about alternative energy, or are we going to go down the unconventional-oil track? The fact that we're willing to move four tons of earth for a single barrel really shows that the world is running out of easy oil."
That thirsty world has come crashing in on Fort McKay. Yet Jim Boucher's view of it, from an elegant new building at the entrance to the besieged little village, contains more shades of gray than you might expect. "The choice we make is a difficult one," Boucher said when I visited him last summer. For a long time the First Nation tried to fight the oil sands industry, with little success. Now, Boucher said, "we're trying to develop the community's capacity to take advantage of the opportunity." Boucher presides not only over this First Nation, as chief, but also over the Fort McKay Group of Companies, a community-owned business that provides ser vices to the oil sands industry and brought in $85 million in 2007. Unemployment is under 5 percent in the village, and it has a health clinic, a youth center, and a hundred new three-bedroom houses that the community rents to its members for far less than market rates. The First Nation is even thinking of opening its own mine: it owns 8,200 acres of prime oil sands land across the river, right next to the Syncrude mine where the ducks died.
As Boucher was telling me all this, he was picking bits of meat from a smoked whitefish splayed out on his conference table next to a bank of windows that offered a panoramic view of the river. A staff member had delivered the fish in a plastic bag, but Boucher couldn't say where it had come from. "I can tell you one thing," he said. "It doesn't come from the Athabasca."
Without the river, there would be no oil sands industry. It's the river that over tens of millions of years has eroded away billions of cubic yards of sediment that once covered the bitumen, thereby bringing it within reach of shovels—and in some places all the way to the surface. On a hot summer day along the Athabasca, near Fort McKay for example, bitumen oozes from the riverbank and casts an oily sheen on the water. Early fur traders reported seeing the stuff and watching natives use it to caulk their canoes. At room temperature, bitumen is like molasses, and below 50 degrees F or so it is as hard as a hockey puck, as Canadians invariably put it. Once upon a time, though, it was light crude, the same liquid that oil companies have been pumping from deep traps in southern Alberta for nearly a century. Tens of millions of years ago, geologists think, a large volume of that oil was pushed northeastward, perhaps by the rise of the Rocky Mountains. In the process it also migrated upward, along sloping layers of sediment, until eventually it reached depths shallow and cool enough for bacteria to thrive. Those bacteria degraded the oil to bitumen.
The Alberta government estimates that the province's three main oil sands deposits, of which the Athabasca one is the largest, contain 173 billion barrels of oil that are economically recoverable today. "The size of that, on the world stage—it's massive," says Rick George, CEO of Suncor, which opened the first mine on the Athabasca River in 1967. In 2003, when the Oil & Gas Journal added the Alberta oil sands to its list of proven reserves, it immediately propelled Canada to second place, behind Saudi Arabia, among oil-producing nations. The proven reserves in the oil sands are eight times those of the entire United States. "And that number will do nothing but go up," says George. The Alberta Energy Resources and Conservation Board estimates that more than 300 billion bar rels may one day be recoverable from the oil sands; it puts the total size of the deposit at 1.7 trillion barrels.
Getting oil from oil sands is simple but not easy. The giant electric shovels that rule the mines have hardened steel teeth that each weigh a ton, and as those teeth claw into the abrasive black sand 24/7, 365 days a year, they wear down every day or two; a welder then plays dentist to the dinosaurs, giving them new crowns. The dump trucks that rumble around the mine, hauling 400-ton loads from the shovels to a rock crusher, burn 50 gallons of diesel fuel an hour; it takes a forklift to change their tires, which wear out in six months. And every day in the Athabasca Valley, more than a million tons of sand emerge from such crushers and is mixed with more than 200,000 tons of water that must be heated, typically to 175 degrees F, to wash out the gluey bitumen. At the upgraders, the bitumen gets heated again, to about 900 degrees F, and compressed to more than 100 atmospheres—that's what it takes to crack the complex molecules and either subtract carbon or add back the hydrogen that the bacteria removed ages ago. That's what it takes to make the light hydrocarbons we need to fill our gas tanks. It takes a stupendous amount of energy. In situ extraction, which is the only way to get
at around 80 percent of those 173 billion barrels, can use up to twice as much energy as mining, because it requires so much steam.
Most of the energy to heat the water or make steam comes from burning natural gas, which also supplies the hydrogen for upgrading. Precisely because it is hydrogen rich and mostly free of impurities, natural gas is the cleanest-burning fossil fuel, the one that puts the least amount of carbon and other pollutants into the atmosphere. Critics thus say the oil sands industry is wasting the cleanest fuel to make the dirtiest—that it turns gold into lead. The argument makes environmental but not economic sense, says David Keith, a physicist and energy expert at the University of Calgary. Each barrel of synthetic crude contains about five times more energy than the natural gas used to make it, and in much more valuable liquid form. "In economic terms it's a slam dunk," says Keith. "This whole thing about turning gold into lead—it's the other way around. The gold in our society is liquid transportation fuels."
Most of the carbon emissions from such fuels come from the tailpipes of the cars that burn them; on a "wells-to-wheels" basis, the oil sands are only 15 to 40 percent dirtier than conventional oil. But the heavier carbon footprint remains an environmental—and public relations—disadvantage. Last June Alberta's premier, Ed Stelmach, announced a plan to deal with the extra emissions. The province, he said, will spend over $1.5 billion to develop the technology for capturing carbon dioxide and storing it underground—a strategy touted for years as a solution to climate change. By 2015 Alberta is hoping to capture 5 million tons of CO2 a year from bitumen upgraders as well as from coal-fired power plants, which even in Alberta, to say nothing of the rest of the world, are a far larger source of CO2 than the oil sands. By 2020, according to the plan, the province's carbon emissions will level off, and by 2050 they will decline to 15 percent below their 2005 levels. That is far less of a cut than scientists say is necessary. But it is more than the U.S. government, say, has committed to in a credible way.