The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos

Home > Other > The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos > Page 2
The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos Page 2

by Brian Greene


  In Chapter 6, we’ll focus on how these considerations illuminate one of the most surprising observational results of the last century: space appears to be filled with a uniform diffuse energy, which may well be a version of Einstein’s infamous cosmological constant. This observation has inspired much of the recent research on parallel universes, and it’s responsible for one of the most heated debates in decades on the nature of acceptable scientific explanations. Chapter 7 extends this theme by asking, more generally, whether consideration of universes beyond our own can be rightly understood as a branch of science. Can we test these ideas? If we invoke them to solve outstanding problems, have we made progress, or have we merely swept the problems under a conveniently inaccessible cosmic rug? I’ve sought to lay bare the essentials of the clashing perspectives, while also emphasizing my own view that, under certain specific conditions, parallel universes fall unequivocally within the purview of science.

  Quantum mechanics, with its Many Worlds version of parallel universes, is the subject of Chapter 8. I’ll briefly remind you of the essential features of quantum mechanics, then focus on its most formidable problem: how to extract definite outcomes from a theory whose basic paradigm allows for mutually contradictory realities to coexist in an amorphous, but mathematically precise, probabilistic haze. I’ll carefully lead you through the reasoning that, in seeking an answer, proposes anchoring quantum reality in its own profusion of parallel worlds.

  Chapter 9 takes us yet further into quantum reality, leading to what I consider the strangest version of all parallel universe proposals. It’s a proposal that emerged gradually over thirty years of theoretical studies on the quantum properties of black holes. The work culminated in the last decade, with a stunning result from string theory, and it suggests, remarkably, that all we experience is nothing but a holographic projection of processes taking place on some distant surface that surrounds us. You can pinch yourself, and what you feel will be real, but it mirrors a parallel process taking place in a different, distant reality.

  Finally, in Chapter 10 the yet more fanciful possibility of artificial universes takes center stage. The question of whether the laws of physics give us the capacity to create new universes will be our first order of business. We’ll then turn to universes created not with hardware but with software—universes that might be simulated on a superadvanced computer—and investigate whether we can be confident that we’re not now living in someone’s or something else’s simulation. This will lead to the most unrestrained parallel universe proposal, originating in the philosophical community: that every possible universe is realized somewhere in what’s surely the grandest of all multiverses. The discussion naturally unfolds into an inquiry about the role mathematics has in unraveling the mysteries of science and, ultimately, our ability, or lack thereof, to gain an ever-deeper understanding of reality.

  The Cosmic Order

  The subject of parallel universes is highly speculative. No experiment or observation has established that any version of the idea is realized in nature. So my point in writing this book is not to convince you that we’re part of a multiverse. I’m not convinced—and, speaking generally, no one should be convinced—of anything not supported by hard data. That said, I find it both curious and compelling that numerous developments in physics, if followed sufficiently far, bump into some variation on the parallel-universe theme. It’s not that physicists are standing ready, multiverse nets in their hands, seeking to snare any passing theory that might be slotted, however awkwardly, into a parallel-universe paradigm. Rather, all of the parallel-universe proposals that we will take seriously emerge unbidden from the mathematics of theories developed to explain conventional data and observations.

  My intention, then, is to lay out clearly and concisely the intellectual steps and the chain of theoretical insights that have led physicists, from a range of perspectives, to consider the possibility that ours is one of many universes. I want you to get a sense of how modern scientific investigations—not untethered fantasies like the catoptric musings of my boyhood—naturally suggest this astounding possibility. I want to show you how certain otherwise confounding observations can become eminently understandable within one or another parallel-universe framework; at the same time, I’ll describe the critical unresolved questions that have, as yet, kept this explanatory approach from being fully realized. My aim is that when you leave this book, your sense of what might be—your perspective on how the boundaries of reality may one day be redrawn by scientific developments now under way—will be far more rich and vivid.

  Some people recoil at the notion of parallel worlds; as they see it, if we are part of a multiverse, our place and importance in the cosmos are marginalized. My take is different. I don’t find merit in measuring significance by our relative abundance. Rather, what’s gratifying about being human, what’s exciting about being part of the scientific enterprise, is our ability to use analytical thought to bridge vast distances, journeying to outer and inner space and, if some of the ideas we’ll encounter in this book prove correct, perhaps even beyond our universe. For me, it is the depth of our understanding, acquired from our lonely vantage point in the inky black stillness of a cold and forbidding cosmos, that reverberates across the expanse of reality and marks our arrival.

  CHAPTER 2

  Endless Doppelgängers

  The Quilted Multiverse

  If you were to head out into the cosmos, traveling ever farther, would you find that space goes on indefinitely, or that it abruptly ends? Or, perhaps, would you ultimately circle back to your starting point, like Sir Francis Drake when he circumnavigated the earth? Both possibilities—a cosmos that stretches infinitely far, and one that is huge but finite—are compatible with all our observations, and over the past few decades leading researchers have vigorously studied each. But for all that detailed scrutiny, if the universe is infinite there’s a breathtaking conclusion that has received relatively scant attention.

  In the far reaches of an infinite cosmos, there’s a galaxy that looks just like the Milky Way, with a solar system that’s the spitting image of ours, with a planet that’s a dead ringer for earth, with a house that’s indistinguishable from yours, inhabited by someone who looks just like you, who is right now reading this very book and imagining you, in a distant galaxy, just reaching the end of this sentence. And there’s not just one such copy. In an infinite universe, there are infinitely many. In some, your doppelgänger is now reading this sentence, along with you. In others, he or she has skipped ahead, or feels in need of a snack and has put the book down. In others still, he or she has, well, a less than felicitous disposition and is someone you’d rather not meet in a dark alley.

  And you won’t. These copies would inhabit realms so distant that light traveling since the big bang wouldn’t have had time to cross the spatial expanse that separates us. But even without the capacity to observe these realms, we’ll see that basic physical principles establish that if the cosmos is infinitely large, it is home to infinitely many parallel worlds—some identical to ours, some differing from ours, many bearing no resemblance to our world at all.

  En route to these parallel worlds, we must first develop the essential framework of cosmology, the scientific study of the origin and evolution of the cosmos as a whole.

  Let’s head in.

  The Father of the Big Bang

  “Your mathematics is correct, but your physics is abominable.” The 1927 Solvay Conference on Physics was in full swing, and this was Albert Einstein’s reaction when the Belgian Georges Lemaître informed him that the equations of general relativity, which Einstein had published more than a decade earlier, entailed a dramatic rewriting of the story of creation. According to Lemaître’s calculations, the universe began as a tiny speck of astounding density, a “primeval atom” as he would come to call it, which swelled over the vastness of time to become the observable cosmos.

  Lemaître cut an unusual figure among the dozens of renowned physici
sts, in addition to Einstein, who had descended on the Hotel Metropole in Brussels for a week of intense debate on quantum theory. By 1923, he had not only completed his work for a doctorate, but he’d also finished his studies at the Saint-Rombaut seminary and been ordained a Jesuit priest. During a break in the conference, Lemaître, clerical collar in place, approached the man whose equations, he believed, were the basis for a new scientific theory of cosmic origin. Einstein knew of Lemaître’s theory, having read his paper on the subject some months earlier, and could find no fault with his manipulations of general relativity’s equations. In fact, this was not the first time someone had presented Einstein with this result. In 1921, the Russian mathematician and meteorologist Alexander Friedmann had come upon a variety of solutions to Einstein’s equations in which space would stretch, causing the universe to expand. Einstein balked at those solutions, at first suggesting that Friedmann’s calculations were marred by errors. In this, Einstein was wrong; he later retracted the claim. But Einstein refused to be mathematics’ pawn. He bucked the equations in favor of his intuition about how the cosmos should be, his deep-seated belief that the universe was eternal and, on the largest of scales, fixed and unchanging. The universe, Einstein admonished Lemaître, is not now expanding and never was.

  Six years later, in a seminar room at Mount Wilson Observatory in California, Einstein focused intently as Lemaître laid out a more detailed version of his theory that the universe began in a primordial flash and that the galaxies were burning embers floating on a swelling sea of space. When the seminar concluded, Einstein stood up and declared Lemaître’s theory to be “the most beautiful and satisfactory explanation of creation to which I have ever listened.”1 The world’s most famous physicist had been persuaded to change his mind about one of the world’s most challenging mysteries. While still largely unknown to the general public, Lemaître would come to be known among scientists as the father of the big bang.

  General Relativity

  The cosmological theories developed by Friedmann and Lemaître relied on a manuscript Einstein sent off to the German Annalen der Physik on the twenty-fifth of November 1915. The paper was the culmination of a nearly ten-year mathematical odyssey, and the results it presented—the general theory of relativity—would prove to be the most complete and far-reaching of Einstein’s scientific achievements. With general relativity, Einstein invoked an elegant geometrical language to thoroughly refashion the understanding of gravity. If you already have a good grounding in the theory’s basic features and cosmological implications, feel free to skip three sections ahead. But if you’d like a brief reminder of the highlights, stay with me.

  Einstein began work on general relativity around 1907, a time when most scientists thought gravity had long since been explained by the work of Isaac Newton. As high school students around the world are routinely taught, in the late 1600s Newton came up with his so-called Universal Law of Gravity, providing the first mathematical description of this most familiar of nature’s forces. His law is so accurate that NASA engineers still use it to calculate spacecraft trajectories, and astronomers still use it to predict the motion of comets, stars, even entire galaxies.2

  Such demonstrable efficacy makes it all the more remarkable that, in the early years of the twentieth century, Einstein realized that Newton’s Law of Gravity was deeply flawed. A seemingly simpleminded question revealed this starkly: How, Einstein asked, does gravity work? How, for example, does the sun reach out across 93 million miles of essentially empty space and affect the motion of the earth? There’s no rope tethering them together, no chain tugging the earth as it moves, so how does gravity exert its influence?

  In his Principia, published in 1687, Newton recognized the importance of this question but acknowledged that his own law was disturbingly silent about the answer. Newton was certain that there had to be something communicating gravity from place to place, but he was unable to identify what that something might be. In the Principia he gibingly left the question “to the consideration of the reader,” and for more than two hundred years, those who read this challenge simply read on. That’s something Einstein couldn’t do.

  For the better part of a decade, Einstein was consumed with finding the mechanism underlying gravity; in 1915, he proposed an answer. Although grounded in sophisticated mathematics and requiring conceptual leaps unheralded in the history of physics, Einstein’s proposal had the same air of simplicity as the question it purported to address. By what process does gravity exert its influence across empty space? The emptiness of empty space seemingly left everyone empty-handed. But, actually, there is something in empty space: space. This led Einstein to suggest that space itself might be gravity’s medium.

  Here’s the idea. Imagine rolling a marble across a large metal table. Because the table’s surface is flat, the marble will roll in a straight line. But if a fire subsequently engulfs the table, causing it to buckle and swell, a rolling marble will follow a different trajectory because it will be guided by the table’s warped and rutted surface. Einstein argued that a similar idea applies to the fabric of space. Completely empty space is much like the flat table, allowing objects to roll unimpeded along straight lines. But the presence of massive bodies affects the shape of space, somewhat as heat affects the shape of the table’s surface. The sun, for example, creates a bulge in its vicinity, much like a metal bubble blistering on the hot table. And just as the table’s curved surface induces the marble to travel along a curved path, so the curved shape of space around the sun guides the earth and other planets into orbit.

  This brief description glides over important details. It’s not just space that curves, but time as well (this is what’s called spacetime curvature); earth’s gravity itself facilitates the table’s influence by keeping the marble pressed to its surface (Einstein contended that warps in space and time don’t need a facilitator since they are gravity); space is three-dimensional, so when it warps it does so all around an object, not just “underneath” as the table analogy suggests. Nevertheless, the image of a warped table captures the essence of Einstein’s proposal. Before Einstein, gravity was a mysterious force that one body somehow exerted across space on another. After Einstein, gravity was recognized as a distortion of the environment caused by one object and guiding the motion of others. Right now, according to these ideas, you are anchored to the floor because your body is trying to slide down an indentation in space (really, spacetime) caused by the earth.*

  Einstein spent years developing this idea into a rigorous mathematical framework, and the resulting Einstein Field Equations, the heart of his general theory of relativity, tell us precisely how space and time will curve as a result of the presence of a given quantity of matter (more precisely, matter and energy; according to Einstein’s E = mc2, in which E is energy and m is mass, the two are interchangeable).3 With equal precision, the theory then shows how such spacetime curvature will affect the motion of anything—star, planet, comet, light itself—moving through it; this allows physicists to make detailed predictions of cosmic motion.

  Evidence in support of general relativity came quickly. Astronomers had long known that Mercury’s orbital motion around the sun deviated slightly from what Newton’s mathematics predicted. In 1915, Einstein used his new equations to recalculate Mercury’s trajectory and was able to explain the discrepancy, a realization he later described to his colleague Adrian Fokker as so thrilling that for some hours it gave him heart palpitations. Then, in 1919, astronomical observations undertaken by Arthur Eddington and his collaborators showed that distant starlight passing by the sun on its way to earth follows a curved path, just the one that general relativity predicted.4 With that confirmation—and the New York Times headline proclaiming LIGHTS ALL ASKEW IN THE HEAVENS, MEN OF SCIENCE MORE OR LESS AGOG—Einstein was propelled to international prominence as the world’s newfound scientific genius, the heir apparent to Isaac Newton.

  But the most impressive tests of general relativity were still to
come. In the 1970s experiments using hydrogen maser clocks (masers are similar to lasers, but they operate in the microwave part of the spectrum) confirmed general relativity’s prediction of the earth’s warping of spacetime in its vicinity to about 1 part in 15,000. In 2003, the Cassini-Huygens spacecraft was used for detailed studies of the trajectories of radio waves that passed near the sun; the data collected supported the curved spacetime picture predicted by general relativity to about 1 part in 50,000. And now, befitting a theory that has truly come of age, many of us walk around with general relativity in the palm of our hand. The global positioning system you casually access from your smartphone communicates with satellites whose internal timing devices routinely take account of the spacetime curvature they experience from their orbit above earth. If the satellites failed to do so, the position readings they generate would rapidly become inaccurate. What in 1916 was a set of abstract mathematical equations that Einstein offered as a new description of space, time, and gravity is now routinely called upon by devices that fit in our pockets.

 

‹ Prev