Works of Johann Wolfgang von Goethe

Home > Fiction > Works of Johann Wolfgang von Goethe > Page 305
Works of Johann Wolfgang von Goethe Page 305

by Johann Wolfgang von Goethe


  Main contents table link

  IX. Dioptrical Colours.

  143

  COLOURS are called dioptrical when a colourless medium is necessary to produce them; the medium must be such that light and darkness can act through it either on the eye or on opposite surfaces. It is thus required that the medium should be transparent, or at least capable, to a certain degree, of transmitting light.

  144

  According to these conditions we divide the dioptrical phenomena into two classes, placing in the first those which are produced by means of imperfectly transparent, yet light-transmitting mediums; and in the second such as are exhibited when the medium is in the highest degree transparent.

  Main contents table link

  X. Dioptrical Colours of the First Class.

  145

  SPACE, if we assume it to be empty, would have the quality of absolute transparency to our vision. If this space is filled so that the eye cannot perceive that it is so, there exists a more or less material transparent medium, which may be of the nature of air and gas, may be fluid or even solid.

  146

  The pure and light-transmitting semi-transparent medium is only an accumulated form of the transparent medium. It may therefore be presented to us in three modes.

  147

  The extreme degree of this accumulation is white; the simplest, brightest, first, opaque occupation of space.

  148

  Transparency itself, empirically considered, is already the first degree of the opposite state. The intermediate degrees from this point to opaque white are infinite.

  149

  At whatever point short of opacity we arrest the thickening medium, it exhibits simple and remarkable phenomena when placed in relation with light and darkness.

  150

  The highest degree of light, such as that of the sun, of phosphorus burning in oxygen, is dazzling and colourless: so the light of the fixed stars is for the most part colourless. This light, however, seen through a medium but very slightly thickened, appears to us yellow. If the density of such a medium be increased, or if its volume become greater, we shall see the light gradually assume a yellow-red hue, which at last deepens to a ruby-colour. — Note L.

  151

  If on the other hand darkness is seen through a semi-transparent medium, which is itself illumined by a light striking on it, a blue colour appears: this becomes lighter and paler as the density of the medium is increased, but on the contrary appears darker and deeper the more transparent the medium becomes: in the least degree of dimness short of absolute transparence, always supposing a perfectly colourless medium, this deep blue approaches the most beautiful violet.

  152

  If this effect takes place in the eye as here described, and may thus be pronounced to be subjective, it remains further to convince ourselves of this by objective phenomena. For a light thus mitigated and subdued illumines all objects in like manner with a yellow, yellow-red, or red hue; and, although the effect of darkness through the non-transparent medium does not exhibit itself so powerfully, yet the blue sky displays itself in the camera obscura very distinctly on white paper, as well as every other material colour.

  153

  In examining the cases in which this important leading phenomenon appears, we naturally mention the atmospheric colours first: most of these may be here introduced in order.

  154

  The sun seen through a certain degree of vapour appears with a yellow disk; the centre is often dazzlingly yellow when the edges are already red. The orb seen through a thick yellow mist appears ruby-red (as was the case in 1794, even in the north); the same appearance is still more decided, owing to the state of the atmosphere, when the scirocco prevails in southern climates: the clouds generally surrounding the sun in the latter case are of the same colour, which is reflected again on all objects.

  The red hues of morning and evening are owing to the same cause. The sun is announced by a red light, in shining through a greater mass of vapours. The higher he rises, the yellower and brighter the light becomes.

  155

  If the darkness of infinite space is seen through atmospheric vapours illumined by the day-light, the blue colour appears. On high mountains the sky appears by day intensely blue, owing to the few thin vapours that float before the endless dark space: as soon as we descend in ‘valleys, the blue becomes lighter; till at last, in certain regions, and in consequence of increasing vapours, it altogether changes to a very pale blue.

  156

  The mountains, in like manner, appear to us blue; for, as we see them at so great a distance that we no longer distinguish the local tints, and as no light reflected from their surface acts on our vision, they are equivalent to mere dark objects, which, owing to the interposed vapours, appear blue.

  157

  So we find the shadowed parts of nearer objects are blue when the air is charged with thin vapours.

  158

  The snow-mountains, on the other hand, at a great distance, still appear white, or approaching to a yellowish hue, because they act on our eyes as brightness seen through atmospheric vapour.

  159

  The blue appearance at the lower part of the flame of a candle belongs to the same class of phenomena. If the flame be held before a white ground, no blue will be seen, but this colour will immediately appear if the flame is opposed to a black ground. This phenomenon may be exhibited most strikingly with a spoonful of lighted spirits of wine. We may thus consider the lower part of the flame as equivalent to the vapour which, although infinitely thin, is still apparent before the dark surface; it is so thin, that one may easily see to read through it: on the other hand, the point of the flame which conceals objects from our sight is to be considered as a self-illuminating body.

  160

  Lastly, smoke is also to be considered as a semi-transparent medium, which appears to us yellow or reddish before a light ground, but blue before a dark one.

  161

  If we now turn our attention to fluid mediums, we find that water, deprived in a very slight degree of its transparency, produces the same effects.

  162

  The infusion of the lignum nephriticum (guilandina Linnaei), which formerly excited so munch attention, is only a semi-transparent liquor, which in dark wooden cups must appear blue, but held towards the sun in a transparent glass must exhibit a yellow appearance.

  163

  A drop of scented water, of spirit varnish, of several metallic solutions, may be employed to give various degrees of opacity to water for such experiments, Spirit of soap perhaps answers best.

  164

  The bottom of the sea appears to divers of a red colour in bright sunshine: in this case the water, owing to its depth, acts as a semi-transparent medium. Under these circumstances, they find the shadows green, which is the complemental colour.

  165

  Among solid mediums the opal attracts our attention first: its colours are, at least, partly to be explained by the circumstance that it is, in fact, a semi-transparent medium, through which sometimes light, sometimes dark, substrata are visible.

  166

  For these experiments, however, the opal-glass (vitrum astroides, girasole) is the most desirable material. It is prepared in various ways, and its semi-opacity is produced by metallic oxydes. The same effect is produced also by melting pulverised and calcined bones together with the glass, on which account it is also known by the name of beinglas; but, prepared in this mode, it easily becomes too opaque.

  167

  This glass may be adapted for experiments in various ways: it may either be made in a very slight degree non-transparent, in which case the light seen through various layers placed one upon the other may be deepened from the lightest yellow to the deepest red, or, if made originally more opaque, it may be employed in thinner or thicker laminae. The experiments may be successfully made in both ways:fin order, however, to see the bright blue colour, the glass should neither be too opaque no
r too thick. For, as it is quite natural that darkness must act weakly through the semi-transparent medium, so this medium, if too thick, soon approaches whiteness.

  168

  Panes of glass throw a yellow light on objects through those parts where they happen to be semi-opaque, and these same parts appear blue if we look at a dark object through them.

  169

  Smoked glass may be also mentioned here, and is, in like manner, to be considered as a semi-opaque medium. It exhibits the sun more or less ruby-coloured; and, although this appearance may be attributed to the black-brown colour of the soot, we may still convince ourselves that a semi-transparent medium here acts if we hold such a glass moderately smoked, and lit by the sun on the unsmoked side, before a dark object, for we shall then perceive a bluish appearance.

  170

  A striking experiment may be made in a dark room with sheets of parchment. If we fasten a piece of parchment before the opening in the window-shutter when the sun shines, it will appear nearly white; by adding a second, a yellowish colour appears, which still increases as more leaves are added, till at last it changes to red.

  171

  A similar effect, owing to the state of the crystalline lens in milky cataract, has been already adverted to (131).

  172

  Having now, in tracing these phenomena, arrived at the effect of a degree of opacity scarcely capable of transmitting light, we may here mention a singular appearance which was owing to a momentary state of this kind.

  A portrait of a celebrated theologian had been painted some years before the circumstance to which we allude, by an artist who was known to have considerable skill in the management of his materials. The very reverend individual was represented in a rich velvet dress, which was not a little admired, and which attracted the eye of the spectator almost more than the face. The picture, however, from the effect of the smoke of lamps and dust, had lost much of its original vivacity. It was, therefore, placed in the hands of a painter, who was to clean it, and give it a fresh coat of varnish. This person began his operations by carefully washing the picture with a sponge: no sooner, however, had he gone over the surface once or twice, and wiped away the first dirt, than to his amazement the black velvet dress changed suddenly to a light blue plush, which gave the ecclesiastic a very secular, though somewhat old-fashioned, appearance. The painter did not venture to go on with his washing: he could not comprehend how a light blue should be the ground of the deepest black, still less how he could so suddenly have removed a glazing colour capable of converting the one tint to the other.

  At all events, he was not a little disconcerted at having spoilt the picture to such an extent. Nothing to characterize the ecclesiastic remained but the richly-curled round wig, which made the exchange of a faded plush for a handsome new velvet dress far from desirable. Meanwhile, the mischief appeared irreparable, and the good artist, having turned the picture to the wall, retired to rest with a mind ill at ease. But what was his joy the next morning, when, on examining the picture, he beheld the black velvet dress again in its full splendour. He could not refrain from again wetting a corner, upon which the blue colour again appeared, and after a time vanished. On hearing of this phenomenon,. I went at once to see the miraculous picture. A wet sponge was passed over it in my presence, and the change quickly took place. I saw a somewhat faded, but decidedly light blue plush dress, the folds under the arm being indicated by some brown strokes.

  I explained this appearance to myself by the doctrine of the semi-opaque medium. The painter, in order to give additional depth to his black, may have passed some particular varnish over it: on being washed, this varnish imbibed some moisture, and hence became semi-opaque, in consequence of which the black underneath immediately appeared blue. Perhaps those who are practically acquainted with the effect of varnishes may, through accident or contrivance, arrive at some means of exhibiting this singular appearance, as an experiment, to those who are fond of investigating natural phenomena. Notwithstanding many attempts, I could not myself succeed in reproducing it.

  173

  Having now traced the most splendid instances of atmospheric appearances, as well as other less striking yet sufficiently remarkable cases, to the leading examples of semi-transparent mediums, we have no doubt that attentive observers of nature will carry such researches further, and accustom themselves to trace and explain the various appearances which present themselves in every-day experience on the same principle: we may also hope that such investigators will provide themselves with an adequate apparatus in order to place remarkable facts before the eyes of others who may be desirous of information.

  174

  We venture, once for all, to call the leading appearance in question, as generally described in the foregoing pages, a primordial and elementary phenomenon; and we may here be permitted at once to state what we understand by the term.

  175

  The circumstances which come under our notice in ordinary observation are, for the most part, insulated cases, which, with some attention, of being classed under general leading facts. These again range themselves under theoretical rubrics which are more comprehensive, and through which we become better acquainted with certain indispensable conditions of appearances in detail. From henceforth everything is gradually arranged under higher rules and laws, which, however, are not to be made intelligible by words and hypotheses to the understanding merely, but, at the same time, by real phenomena to the senses. We call these primordial phenomena, because nothing appreciable by the senses lies beyond them, on the contrary, they are perfectly fit to be considered as a fixed point to which we first ascended, step by step, and from which we may, in like manner, descend to the commonest case of every-day experience. Such an original phenomenon is that which has lately engaged our attention. We see on the one side light, brightness; on the other darkness, obscurity: we bring the semi-transparent medium between the two, and from these contrasts and this medium the colours develop themselves, contrasted, in like manner, but soon, through a reciprocal relation, directly tending again to a point of union.

  176

  With this conviction we look upon the mistake that has been committed in the investigation of this subject to be a very serious one, inasmuch as a secondary phenomenon has been thus placed higher in order — the primordial phenomenon has been degraded to an inferior place; nay, the secondary phenomenon has been placed at the head, a compound effect has been treated as simple, a simple appearance as compound: owing to this contradiction, the most capricious complication and perplexity have been introduced into physical inquiries, the effects of which are still apparent.

  177

  But when even such a primordial phenomenon is arrived at, the evil still is that we refuse to recognise it as such, that we still aim at something beyond, although it would become us to confess that we are arrived at the limits of experimental knowledge. Let the observer of nature suffer the primordial phenomenon to remain undisturbed in its beauty; let the philosopher admit it into his department, and he will find that important elementary facts are a worthier basis for further operations than insulated cases, opinions, and hypotheses. — Note M.

  Main contents table link

  XI. Dioptrical Colours of the Second Class. — Refraction.

  178

  DIOPTRICAL colours of both classes are closely connected, as will presently appear on a little examination. Those of the first class appeared through semi-transparent mediums, those of the second class will now appear through transparent mediums. But since every substance, however transparent, may be already considered to partake of the opposite quality (as every accumulation of a medium called transparent proves), so the near affinity of the two classes is sufficiently manifest.

  179

  We will, however, first consider transparent mediums abstractedly as such, as entirely free from any degree of opacity, and direct our whole attention to a phenomenon which here presents itself, and which is known by the name of refraction
.

  180

  In treating of the physiological colours, we have already had occasion to vindicate what were formerly called illusions of sight, as the active energies of the healthy and duly efficient eye (2), and we are now again invited to consider similar instances confirming the constancy of the laws of vision.

  181

  Throughout nature, as presented to the senses, everything depends on the relation which things bear to each other, but especially on the relation which man, the most important of these, bears to the rest. Hence the world divides itself into two parts, and the human being as subject, stands opposed to the object. Thus the practical man exhausts himself in the accumulation of facts, the thinker in speculation; each being called upon to sustain a conflict which admits of no peace and no decision.

  182

  But still the main point always is, whether the relations are truly seen. As our senses, if healthy, are the surest witnesses of external relations, so we may be convinced that, in all instances where they appear to contradict reality, they lay the greater and surer stress on true relations. Thus a distant object appears to us smaller; and precisely by this means we are aware of distance. We produced coloured appearances on colourless objects, through colourless mediums, and at the same moment our attention was called to the degree of opacity in the medium.

  183

  Thus the different degrees of opacity in so-called transparent mediums, nay, even other physical and chemical properties belonging to them, are known to our vision by means of refraction, and invite us to make further trials in order to penetrate more completely by physical and chemical means into those secrets which are already opened to our view on one side.

 

‹ Prev