The Science of Discworld

Home > Other > The Science of Discworld > Page 8
The Science of Discworld Page 8

by Terry Pratchett


  In this universe, we began to understand why elements were unique individuals, and what distinguished them from compounds. Again the glimmerings of the right idea go back to the Greeks, with Democritus' suggestion that all matter is made from tiny indivisible particles, which he called atoms (Greek for 'not divisible'). It is unclear whether anybody, even Democritus, actually believed this in Greek times, it may just have been a clever debating point. Boyle revived the idea, suggesting that each element corresponds to a single kind of atom, whereas compounds are combinations of different kinds of atoms. So the element oxygen is made from oxygen atoms and nothing else, the element hydrogen is made from hydrogen atoms and nothing else, but the compound water is not made from water atoms and nothing else, it is made from atoms of hydrogen and atoms of oxygen.

  By 1807, one of the most significant steps in the development of both chemistry and physics had taken place. The Englishman John Dalton had found a way to bring a degree of order to the different atoms that made up the elements, and to transfer some of that order to compounds too. His predecessors had noticed that when elements combine together to form compounds, they do so in simple and characteristic proportions. So much oxygen plus so much hydrogen makes so much water, and the proportions by weight of oxygen and hydrogen are always the same. Moreover, those proportions all fit together nicely if you look at other compounds involving hydrogen and other compounds involving oxygen.

  Dalton realized that all this would make perfect sense if each atom of hydrogen had a fixed weight, each atom of oxygen had a fixed weight, and the weight of an oxygen atom was 16 times that of hydrogen. The evidence for this theory had to be indirect, because an atom is far too tiny for anyone to be able to weigh one, but it was extensive and compelling. And so the theory of 'atomic weight' arrived on the scene, and it let chemists list the elements in order of atomic weight.

  That list begins like this (modern values for atomic weights in brackets): Hydrogen (1.00794), Helium (4.00260), Lithium (6.941), Beryllium (9.01218), Boron (10.82), Carbon (12.011), Nitrogen (14.0067), Oxygen (15.9994), Fluorine (18.998403), Neon (20.179), Sodium (22.98977). A striking feature is that the atomic weight is nearly always close to a whole number, the first exception being chlorine at 35.453. All a bit puzzling, but it was an excellent start because now people could look for other patterns and relate them to atomic weights. However, looking for patterns proved easier than finding any. The list of elements was unstructured, almost random in its properties. Mercury, the only element known to be liquid at room temperature, was a metal. (Later just one further liquid was added to the list: bromine.) There were lots of other metals like iron, copper, silver, gold, zinc, tin, each a solid and each quite different from the others; sulphur and carbon were solid but not metallic; quite a few elements were gases. So unstructured did the list of elements seem that when a few mavericks — Johann Dobereiner, Alexandre-Emile Beguyrer de Chancourtois, John Newlands — suggested there might be some kind of order dimly visible amid the muddle and mess, they were howled down.

  Credit for coming up with a scheme that was basically right goes to Dimitri Mendeleev, who finished the first of a lengthy series of 'periodic charts' in 1869. His chart included 63 known elements placed in order of atomic weight. It left gaps where undiscovered elements allegedly remained to be inserted. It was 'periodic' in the sense that the properties of the elements started to repeat after a certain number of steps, the commonest being eight.

  According to Mendeleev, the elements fall into families, whose members are separated by the aforementioned periods, and in each family there are systematic resemblances of physical and chemical properties. Indeed those properties vary so systematically as you run through the family that you can see clear, though not always exact, numerical patterns and progressions. The scheme works best, however, if you assume that a few elements are missing from the known list, hence the gaps. As a bonus, you can make use of those family resemblances to predict the properties of those missing elements before anybody finds them. If those predictions turn out to be correct when the missing elements are found, bingo. Mendeleev's scheme still gets modified slightly from time to time, but its main features survive: today we call it the Periodic Table of the Elements.

  We now know that there is a good reason for the periodic structure that Mendeleev uncovered. It stems from the fact that atoms are not as indivisible as Democritus and Boyle thought. True, they can't be divided chemically — you can't separate an atom into component pieces by doing chemistry in a test tube — but you can 'split the atom' with apparatus that is based on physics rather than chemistry. The 'nuclear reactions' involved require much higher energy levels — per atom — than you need for chemical reactions, which is why the old-time alchemists never managed to turn lead into gold. Today, this could be done — but the cost of equipment would be enormous, and the amount of gold produced would be extremely small, so the scientists would be very much like Discworld's own alchemists, who have only found ways of turning gold into less gold.

  Thanks to the efforts of the physicists, we now know that atoms are made from other, smaller particles. For a while it was thought that there were just three such particles: the neutron, the proton, and the electron. The neutron and proton have almost equal masses, while the electron is tiny in comparison; the neutron has no electrical charge, the proton has a positive charge, and the electron has a negative charge exactly opposite to that of the proton. Atoms have no overall charge, so the numbers of protons and electrons are equal. There is no such restriction on the number of neutrons. To a good approximation, you get an element's atomic weight by adding up the numbers of protons and neutrons — for example oxygen has eight of each, and 8 + 8 = 16, the atomic weight.

  Atoms are incredibly small by human standards — about a hundred millionth of an inch (250 millionths of a centimetre) across for an atom of lead. Their constituent particles, however, are considerably smaller. By bouncing atoms off each other, physicists found that they behave as if the protons and neutrons occupy a tiny region in the middle — the nucleus — but the electrons are spread outside the nucleus over what, comparatively speaking, is a far bigger region. For a while, the atom was pictured as being rather like a tiny solar system, with the nucleus playing the role of the sun and the electrons orbiting it like planets. However, this model didn't work very well — for example, an electron is a moving charge, and according to classical physics a moving charge emits radiation, so the model predicted that within a split second every electron in an atom would radiate away all of its energy and spiral into the nucleus. With the kind of physics that developed from Isaac Newton's epic discoveries, atoms built like solar systems just don't work. Nevertheless, this is the public myth, the lie-to-children that automatically springs to mind. It is endowed with so much narrativium that we can't eradicate it.

  After a lot of argument, the physicists who worked with matter on very small scales decided to hang on to the solar system model and throw away Newtonian physics, replacing it with quantum theory. Ironically, the solar system model of the atom still didn't work terribly well, but it survived for long enough to help get quantum theory off the ground. According to quantum theory the protons, neutrons, and electrons that make an atom don't have precise locations at all — they're kind of smeared out. But you can say how much they are smeared out, and the protons and neutrons are smeared out over a tiny region near the middle of the atom, whereas the electrons are smeared out all over it.

  Whatever the physical model, everyone agreed all along that the chemical properties of an atom depend mainly on its electrons, because the electrons are on the outside, so atoms can stick together by sharing electrons. When they stick together they form molecules, and that's chemistry. Since an atom is electrically neutral overall, the number of electrons must equal the number of protons, and it is this 'atomic number', not the atomic weight, that organizes the periodicities found by Mendeleev However, the atomic weight is usually about twice the atomic number, becau
se the number of neutrons in an atom is pretty close to the number of protons for quantum reasons, so you get much the same ordering whichever quantity you use. Nevertheless, it is the atomic number that makes more sense of the chemistry and explains the periodicity. It turns out that period eight is indeed important, because the electrons live in a series of 'shells', like Russian dolls, one inside the other, and until you get some way up the list of elements a complete shell contains eight electrons.

  Further along, the shells get bigger, so the period gets bigger too. At least, that's what Joseph (J. J.) Thompson said in 1904. The modern theory is quantum and more complicated, with far more than three 'fundamental' particles, and the calculations are much harder, but they have much the same implications. Like most science, an initially simple story became more complicated as it was developed and headed rapidly towards the Magical Event Horizon for most people.

  But even the simplified story explains a lot of otherwise baffling things. For instance, if the atomic weight is the number of protons plus neutrons, how come atomic weight isn't always a whole number? What about chlorine, for instance, with atomic weight 35.453? It turns out there are two different kinds of chlorine. One kind has 17 protons and 18 neutrons (and 17 electrons, naturally, the same as protons), with atomic weight 35. The other kind has 17 protons and 20 neutrons (and 17 electrons, again) — an extra two neutrons, which raises the atomic weight to 37. Naturally occurring chlorine is a mixture of these two 'isotopes', as they are called, in roughly the proportions 3 to 1. The two isotopes are (almost) indistinguishable chemically, because they have the same number and arrangement of electrons, and that's what makes chemistry work; but they have different atomic physics.

  It is easy for a non-physicist to see why the wizards of UU considered this universe to be made in too much of a hurry out of obviously inferior components ...

  Where did all those 112 elements come from? Were they always around, or did they get put together as the universe developed?

  In our Universe, there seem to be five different ways to make elements:

  Start up a universe with a Big Bang, obtaining a highly energetic ('hot') sea of fundamental particles. Wait for it to cool (or possibly use one you made earlier ...). Along with ordinary matter, you'll probably get a lot of exotic objects like tiny black holes, and magnetic monopoles but these will disappear pretty quickly and only conventional matter will remain — mostly. In a very hot universe, electromagnetic forces are too weak to resist disruption, but once the universe is cool enough, fundamental particles can stick together as a result of electromagnetic attraction. The only element that arises directly in this manner is hydrogen — one electron joined with one proton. However, you get an awful lot of it: in our universe it is by far the commonest element, and nearly all of it arose from the Big Bang.

  Protons and electrons can also associate to form deuterium (one electron, one proton, one neutron) or tritium (one electron, one proton, two neutrons), but tritium is radioactive, meaning that it spits out neutrons and decays into hydrogen again. A far more stable product is helium (two electrons, two protons, two neutrons), and helium is the second most abundant element in the universe.

  Let gravity get in on the act. Now hydrogen and helium collect together to form stars — the wizards' 'furnaces'. At the centre of stars, the pressure is extremely high. This brings new nuclear reactions into play, and you get nuclear fusion, in which atoms become so squashed together that they merge into a new, bigger atom. In this manner, many other familiar elements were formed, from carbon, nitrogen, oxygen, to the less familiar lithium, beryllium and so on up to iron. Many of these elements occur in living creatures, the most important being carbon. For reasons to do with its unique electron structure, carbon is the only atom that can combine with itself to form huge, complex molecules, without which our kind of life would be impossible.* Anyway, the point is that most of the atoms from which you are made must have come into being inside a star. As Joni Mitchell sang at Woodstock:* 'We are stardust.’ Scientists like quoting this line, because it sounds as though they were young once.

  Wait for some of the stars to explode. There are (comparatively) small explosions called novas, meaning 'new (star)', and more violent ones — supernovas. (What's 'new' is that usually we can't see the star until it explodes, and then we can.) It's not just that the nuclear fuel gets used up: the hydrogen and helium that fuel the star fuse into heavier elements, which in effect become impurities that disturb the nuclear reaction. Pollution is a problem even at the heart of a star. The physics of these early suns changes, and some of the larger ones explode, generating higher elements like iodine, thorium, lead, uranium, and radium. These stars are called 'Population II' by astrophysicists — they are old stars, low in heavy elements, but not lacking them entirely.

  There are two kinds of supernova, and the other type creates heavy elements in abundance, leading to 'Population I' stars, which are much younger than Population II.* Because many of these elements have unstable atoms, various other elements are made by their radioactive decay. These 'secondhand' elements include lead.

  Lastly, human beings have made some elements by special arrangements in atomic reactors — the best known being plutonium, a by-product of conventional uranium reactors and a raw material for nuclear weapons. Some rather exotic ones, with very short lifetimes, have been made in experimental atombashers: so far we've got to element 114, with 113 still missing. Element 116 may also have been made, but a claim of element 118 from the Lawrence Berkeley National Laboratory in 1999 has been withdrawn. Physicists always fight over who got what first and who therefore has the right to propose a name, so at any given time the heaviest elements are likely to have been assigned temporary (and ludicrous) names such as 'ununnilium' for element 110 — dog-Latin for '1-1-0-ium'.

  What's the point of making extremely short-lived elements like these? You can't use them for anything. Well, like mountains, they are there; moreover, it always helps to test your theories on extreme cases. But the best reason is that they may be steps towards something rather more interesting, assuming that it actually exists. Generally speaking, once you get past polonium at atomic number 84 everything is radioactive — it spits out particles of its own accord and 'decays' into something else — and the greater an element's atomic number, the more rapidly it decays. However, this tendency may not continue indefinitely. We can't model heavy atoms exactly — in fact we can't even model light atoms exactly, but the heavier they are the worse it gets.

  Various empirical models (intelligent approximations based on intuition, guesswork, and fiddling adjustable constants) have led to a surprisingly accurate formula for how stable an element should be when it has a given number of protons and a given number of neutrons. For certain 'magic numbers' — Roundworld terminology that suggests the physicists concerned have imbibed some of the spirit of Discworld and realized that the formula is closer to a spell than a theory — the corresponding atoms are unusually stable. The magic numbers for protons are 28, 50, 82, 114, and 164; those for neutrons are 28, 50, 82, 126, 184, 196, and 318. For example the most stable element of all is lead, with 82 protons and 126 neutrons.

  Only two steps beyond the incredibly unstable element 112 lies element 114, tentatively named eka-lead. With 114 protons and 184 neutrons it is doubly magic and is therefore likely to be a lot more stable than most elements in its vicinity. The uncertainty arises from worries about the approximations in the stability formula, which may not work for such large numbers. Every wizard is aware that spells can often go wrong. Assuming that the spell works, though, we can play Mendeleev and predict the properties of eka-lead by extrapolating from those in the 'lead' series in the periodic table (carbon, silicon, germanium, tin, lead). As the name suggests, eka-lead turns out to resemble lead — it's expected to be a metal with a melting point of 70°C and a boiling point of 150°C at atmospheric pressure. Its density should be 25% greater than that of lead.

  In 1999 the Joint Institute for
Nuclear Research in Dubna, Russia, announced that it had created one atom of element 114, though this isotope had only 175 neutrons and so missed one of the magic numbers. Even so, its lifetime was about 30 seconds — astonishingly long for an element this heavy, and suggesting that the magic may be working. Soon after, the same group produced two atoms of element 114 with 173 neutrons. Element 114 was also created in a separate experiment in the USA. Until we can make 'eka-lead' in bulk, not just a few atoms at a time, its physical properties can’t be verified. But its nuclear properties seem to be holding up well in comparison to theory.

  Even further out lies the doubly magic element 164, with 164 protons and 318 neutrons, and beyond that, the magic numbers may continue ... It is always dangerous to extrapolate, but even if the formula is wrong, there could well be certain special configurations of protons and neutrons that are stable enough for the corresponding elements to hang around in the real universe. Perhaps this is where elephantigen and chelonium come from. Possibly Noggo and Plinc await our attention, somewhere. Maybe there are stable elements with vast atomic numbers — some might even be the size of a star. Consider, for instance, a neutron star, one made almost entirely of neutrons, which forms when a larger star collapses under its own gravitational attraction. Neutron stars are incredibly dense: about forty trillion pounds per square inch (100 billion kg/cc) — twenty million elephants in a nutshell. They have a surface gravity seven billion times that of the Earth, and a magnetic field a trillion times that of the Earth. The particles in a neutron star are so closely packed that in effect it is one big atom.

 

‹ Prev