The Golden Age of Science Fiction Novels Vol 05

Home > Nonfiction > The Golden Age of Science Fiction Novels Vol 05 > Page 365
The Golden Age of Science Fiction Novels Vol 05 Page 365

by Anthology


  "There is no doubt about that," answered the major, "and as we shall have to employ a considerable quantity of metal we shall not have much choice."

  "Well, then," said Morgan, "I propose for the fabrication of the Columbiad the best alloy hitherto known--that is to say, 100 parts of copper, 12 of tin, and 6 of brass."

  "My friends," answered the president, "I agree that this composition has given excellent results; but in bulk it would be too dear and very hard to work. I therefore think we must adopt an excellent material, but cheap, such as cast-iron. Is not that your opinion, major?"

  "Quite," answered Elphinstone.

  "In fact," resumed Barbicane, "cast-iron costs ten times less than bronze; it is easily melted, it is readily run into sand moulds, and is rapidly manipulated; it is, therefore, an economy of money and time. Besides, that material is excellent, and I remember that during the war at the siege of Atlanta cast-iron cannon fired a thousand shots each every twenty minutes without being damaged by it."

  "Yet cast-iron is very brittle," answered Morgan.

  "Yes, but it possesses resistance too. Besides, we shall not let it explode, I can answer for that."

  "It is possible to explode and yet be honest," replied J.T. Maston sententiously.

  "Evidently," answered Barbicane. "I am, therefore, going to beg our worthy secretary to calculate the weight of a cast-iron cannon 900 feet long, with an inner diameter of nine feet, and sides six feet thick."

  "At once," answered J.T. Maston, and, as he had done the day before, he made his calculations with marvellous facility, and said at the end of a minute--

  "This cannon will weigh 68,040 tons."

  "And how much will that cost at two cents a pound?"

  "Two million five hundred and ten thousand seven hundred and one dollars."

  J.T. Maston, the major, and the general looked at Barbicane anxiously.

  "Well, gentlemen," said the president, "I can only repeat what I said to you yesterday, don't be uneasy; we shall not want for money."

  Upon this assurance of its president the committee broke up, after having fixed a third meeting for the next evening.

  CHAPTER IX.

  THE QUESTION OF POWDERS.

  The question of powder still remained to be settled. The public awaited this last decision with anxiety. The size of the projectile and length of the cannon being given, what would be the quantity of powder necessary to produce the impulsion? This terrible agent, of which, however, man has made himself master, was destined to play a part in unusual proportions.

  It is generally known and often asserted that gunpowder was invented in the fourteenth century by the monk Schwartz, who paid for his great discovery with his life. But it is nearly proved now that this story must be ranked among the legends of the Middle Ages. Gunpowder was invented by no one; it is a direct product of Greek fire, composed, like it, of sulphur and saltpetre; only since that epoch these mixtures; which were only dissolving, have been transformed into detonating mixtures.

  But if learned men know perfectly the false history of gunpowder, few people are aware of its mechanical power. Now this is necessary to be known in order to understand the importance of the question submitted to the committee.

  Thus a litre of gunpowder weighs about 2 lbs.; it produces, by burning, about 400 litres of gas; this gas, liberated, and under the action of a temperature of 2,400°, occupies the space of 4,000 litres. Therefore the volume of powder is to the volume of gas produced by its deflagration as 1 to 400. The frightful force of this gas, when it is compressed into a space 4,000 times too small, may be imagined.

  This is what the members of the committee knew perfectly when, the next day, they began their sitting. Major Elphinstone opened the debate.

  "My dear comrades," said the distinguished chemist, "I am going to begin with some unexceptionable figures, which will serve as a basis for our calculation. The 24-lb. cannon-ball, of which the Hon. J.T. Maston spoke the day before yesterday, is driven out of the cannon by 16 lbs. of powder only."

  "You are certain of your figures?" asked Barbicane.

  "Absolutely certain," answered the major. "The Armstrong cannon only uses 75 lbs. of powder for a projectile of 800 lbs., and the Rodman Columbiad only expends 160 lbs. of powder to send its half-ton bullet six miles. These facts cannot be doubted, for I found them myself in the reports of the Committee of Artillery."

  "That is certain," answered the general.

  "Well," resumed the major, "the conclusion to be drawn from these figures is that the quantity of powder does not augment with the weight of the shot; in fact, if a shot of 24 lbs. took 16 lbs. of powder, and, in other terms, if in ordinary cannons a quantity of powder weighing two-thirds of the weight of the projectile is used, this proportion is not always necessary. Calculate, and you will see that for the shot of half a ton weight, instead of 333 lbs. of powder, this quantity has been reduced to 116 lbs. only.

  "What are you driving at?" asked the president.

  "The extreme of your theory, my dear major," said J.T. Maston, "would bring you to having no powder at all, provided your shot were sufficiently heavy."

  "Friend Maston will have his joke even in the most serious things," replied the major; "but he need not be uneasy; I shall soon propose a quantity of powder that will satisfy him. Only I wish to have it understood that during the war, and for the largest guns, the weight of the powder was reduced, after experience, to a tenth of the weight of the shot."

  "Nothing is more exact," said Morgan; "but, before deciding the quantity of powder necessary to give the impulsion, I think it would be well to agree upon its nature."

  "We shall use a large-grained powder," answered the major; "its deflagration is the most rapid."

  "No doubt," replied Morgan; "but it is very brittle, and ends by damaging the chamber of the gun."

  "Certainly; but what would be bad for a gun destined for long service would not be so for our Columbiad. We run no danger of explosion, and the powder must immediately take fire to make its mechanical effect complete."

  "We might make several touchholes," said J.T. Maston, "so as to set fire to it in several places at the same time."

  "No doubt," answered Elphinstone, "but that would make the working of it more difficult. I therefore come back to my large-grained powder that removes these difficulties."

  "So be it," answered the general.

  "To load his Columbiad," resumed the major, "Rodman used a powder in grains as large as chestnuts, made of willow charcoal, simply rarefied in cast-iron pans. This powder was hard and shining, left no stain on the hands, contained a great proportion of hydrogen and oxygen, deflagrated instantaneously, and, though very brittle, did not much damage the mouthpiece."

  "Well, it seems to me," answered J.T. Maston, "that we have nothing to hesitate about, and that our choice is made."

  "Unless you prefer gold-powder," replied the major, laughing, which provoked a threatening gesture from the steel hook of his susceptible friend.

  Until then Barbicane had kept himself aloof from the discussion; he listened, and had evidently an idea. He contented himself with saying simply--

  "Now, my friends, what quantity of powder do you propose?"

  The three members of the Gun Club looked at one another for the space of a minute.

  "Two hundred thousand pounds," said Morgan at last.

  "Five hundred thousand," replied the major.

  "Eight hundred thousand," exclaimed J.T. Maston.

  This, time Elphinstone dared not tax his colleague with exaggeration. In fact, the question was that of sending to the moon a projectile weighing 20,000 lbs., and of giving it an initial force of 2000 yards a second. A moment of silence, therefore, followed the triple proposition made by the three colleagues.

  It was at last broken by President Barbicane.

  "My brave comrades," said he in a quiet tone, "I start from this principle, that the resistance of our cannon, in the given conditions, is unlimited. I sh
all, therefore, surprise the Honourable J.T. Maston when I tell him that he has been timid in his calculations, and I propose to double his 800,000 lbs. of powder."

  "Sixteen hundred thousand pounds!" shouted J.T. Maston, jumping out of his chair.

  "Quite as much as that."

  "Then we shall have to come back to my cannon half a mile long."

  "It is evident," said the major.

  "Sixteen hundred thousand pounds of powder," resumed the Secretary of Committee, "will occupy about a space of 22,000 cubic feet; now, as your cannon will only hold about 54,000 cubic feet, it will be half full, and the chamber will not be long enough to allow the explosion of the gas to give sufficient impulsion to your projectile."

  There was nothing to answer. J.T. Maston spoke the truth. They all looked at Barbicane.

  "However," resumed the president, "I hold to that quantity of powder. Think! 1,600,000 pounds of powder will give 6,000,000,000 litres of gas."

  "Then how is it to be done?" asked the general.

  "It is very simple. We must reduce this enormous quantity of powder, keeping at the same time its mechanical power."

  "Good! By what means?"

  "I will tell you," answered Barbicane simply.

  His interlocutors all looked at him.

  "Nothing is easier, in fact," he resumed, "than to bring that mass of powder to a volume four times less. You all know that curious cellular matter which constitutes the elementary tissues of vegetables?"

  "Ah!" said the major, "I understand you, Barbicane."

  "This matter," said the president, "is obtained in perfect purity in different things, especially in cotton, which is nothing but the skin of the seeds of the cotton plant. Now cotton, combined with cold nitric acid, is transformed into a substance eminently insoluble, eminently combustible, eminently explosive. Some years ago, in 1832, a French chemist, Braconnot, discovered this substance, which he called xyloidine. In 1838, another Frenchman, Pelouze, studied its different properties; and lastly, in 1846, Schonbein, professor of chemistry at Basle, proposed it as gunpowder. This powder is nitric cotton."

  "Or pyroxyle," answered Elphinstone.

  "Or fulminating cotton," replied Morgan.

  "Is there not an American name to put at the bottom of this discovery?" exclaimed J.T. Maston, animated by a lively sentiment of patriotism.

  "Not one, unfortunately," replied the major.

  "Nevertheless, to satisfy Maston," resumed the president, "I may tell him that one of our fellow-citizens may be annexed to the study of the celluosity, for collodion, which is one of the principal agents in photography, is simply pyroxyle dissolved in ether to which alcohol has been added, and it was discovered by Maynard, then a medical student."

  "Hurrah for Maynard and fulminating cotton!" cried the noisy secretary of the Gun Club.

  "I return to pyroxyle," resumed Barbicane. "You are acquainted with its properties which make it so precious to us. It is prepared with the greatest facility; cotton plunged in smoking nitric acid for fifteen minutes, then washed in water, then dried, and that is all."

  "Nothing is more simple, certainty," said Morgan.

  "What is more, pyroxyle is not damaged by moisture, a precious quality in our eyes, as it will take several days to load the cannon. Its inflammability takes place at 170° instead of at 240° and its deflagration is so immediate that it may be fired on ordinary gunpowder before the latter has time to catch fire too."

  "Perfect," answered the major.

  "Only it will cost more."

  "What does that matter?" said J.T. Maston.

  "Lastly, it communicates to projectiles a speed four times greater than that of gunpowder. I may even add that if 8/10ths of its weight of nitrate of potash is added its expansive force is still greatly augmented."

  "Will that be necessary?" asked the major.

  "I do not think so," answered Barbicane. "Thus instead of 1,600,000 lbs. of powder, we shall only have 400,000 lbs. of fulminating cotton, and as we can, without danger, compress 500 lbs. of cotton into 27 cubic feet, that quantity will not take up more than 180 feet in the chamber of the Columbiad. By these means the projectile will have more than 700 feet of chamber to traverse under a force of 6,000,000,000 of litres of gas before taking its flight over the Queen of Night."

  Here J.T. Maston could not contain his emotion. He threw himself into the arms of his friend with the violence of a projectile, and he would have been stove in had he not have been bombproof.

  This incident ended the first sitting of the committee. Barbicane and his enterprising colleagues, to whom nothing seemed impossible, had just solved the complex question of the projectile, cannon, and powder. Their plan being made, there was nothing left but to put it into execution.

  CHAPTER X.

  ONE ENEMY AGAINST TWENTY-FIVE MILLIONS OF FRIENDS.

  The American public took great interest in the least details of the Gun Club's enterprise. It followed the committee debates day by day. The most simple preparations for this great experiment, the questions of figures it provoked, the mechanical difficulties to be solved, all excited popular opinion to the highest pitch.

  More than a year would elapse between the commencement of the work and its completion; but the interval would not be void of excitement. The place to be chosen for the boring, the casting the metal of the Columbiad, its perilous loading, all this was more than necessary to excite public curiosity. The projectile, once fired, would be out of sight in a few seconds; then what would become of it, how it would behave in space, how it would reach the moon, none but a few privileged persons would see with their own eyes. Thus, then, the preparations for the experiment and the precise details of its execution constituted the real source of interest.

  In the meantime the purely scientific attraction of the enterprise was all at once heightened by an incident.

  It is known what numerous legions of admirers and friends the Barbicane project had called round its author. But, notwithstanding the number and importance of the majority, it was not destined to be unanimous. One man, one out of all the United States, protested against the Gun Club. He attacked it violently on every occasion, and--for human nature is thus constituted--Barbicane was more sensitive to this one man's opposition than to the applause of all the others.

  Nevertheless he well knew the motive of this antipathy, from whence came this solitary enmity, why it was personal and of ancient date; lastly, in what rivalry it had taken root.

  The president of the Gun Club had never seen this persevering enemy. Happily, for the meeting of the two men would certainly have had disastrous consequences. This rival was a savant like Barbicane, a proud, enterprising, determined, and violent character, a pure Yankee. His name was Captain Nicholl. He lived in Philadelphia.

  No one is ignorant of the curious struggle which went on during the Federal war between the projectile and ironclad vessels, the former destined to pierce the latter, the latter determined not to be pierced. Thence came a radical transformation in the navies of the two continents. Cannon-balls and iron plates struggled for supremacy, the former getting larger as the latter got thicker. Ships armed with formidable guns went into the fire under shelter of their invulnerable armour. The Merrimac, Monitor, ram Tennessee, and Wechhausen shot enormous projectiles after having made themselves proof against the projectiles of other ships. They did to others what they would not have others do to them, an immoral principle upon which the whole art of war is based.

  Now Barbicane was a great caster of projectiles, and Nicholl was an equally great forger of plate-armour. The one cast night and day at Baltimore, the other forged day and night at Philadelphia. Each followed an essentially different current of ideas.

  As soon as Barbicane had invented a new projectile, Nicholl invented a new plate armour. The president of the Gun Club passed his life in piercing holes, the captain in preventing him doing it. Hence a constant rivalry which even touched their persons. Nicholl appeared in Barbicane's dreams as an im
penetrable ironclad against which he split, and Barbicane in Nicholl's dreams appeared like a projectile which ripped him up.

  Still, although they ran along two diverging lines, these savants would have ended by meeting each other in spite of all the axioms in geometry; but then it would have been on a duel field. Happily for these worthy citizens, so useful to their country, a distance of from fifty to sixty miles separated them, and their friends put such obstacles in the way that they never met.

  At present it was not clearly known which of the two inventors held the palm. The results obtained rendered a just decision difficult. It seemed, however, that in the end armour-plate would have to give way to projectiles. Nevertheless, competent men had their doubts. At the latest experiments the cylindro-conical shots of Barbicane had no more effect than pins upon Nicholl's armour-plate. That day the forger of Philadelphia believed himself victorious, and henceforth had nothing but disdain for his rival. But when, later on, Barbicane substituted simple howitzers of 600 lbs. for conical shots, the captain was obliged to go down in his own estimation. It fact, these projectiles, though of mediocre velocity, drilled with holes and broke to pieces armour-plate of the best metal.

 

‹ Prev