The Greatest Story Ever Told—So Far

Home > Other > The Greatest Story Ever Told—So Far > Page 31
The Greatest Story Ever Told—So Far Page 31

by Lawrence M. Krauss


  learning by seeing and, 19

  Maxwell’s research on, 33–34, 36–43, 94

  Newton’s research on, 22–24, 73–74

  Plato’s cave allegory and role of, 13, 17, 19, 304

  religion’s focus on, 19–20

  speed of, equation for, 42

  understanding our place in universe and changing understanding of, 20

  wave theory of, 22, 23, 24, 73–74

  Young’s double-slit experiment on behavior of, 74–76, 77, 88

  Lion, the Witch and the Wardrobe, The (Lewis), 10–11

  London, Fritz and Heinz, 195, 196

  London penetration depth, 196–97

  Lorentz, Hendrik, 69, 127

  Lorentz force, 68–69

  Low, Francis, 237

  M

  magnetic induction, Faraday’s discovery of, 26–27, 30, 36

  magnets and magnetism

  Faraday’s research on, 25–30, 37–38, 68, 195

  Lorentz force and, 68–69

  Maxwell’s research on electricity and, 36–39, 48, 94, 218, 219

  Maiani, Luciano, 234

  Manhattan Project, 31, 129

  Marsden, Ernest, 116

  Marshak, Robert, 147, 162–64

  mass gap, in superconductivity, 187

  massive vector mesons, 193–94, 211

  Maxwell, James Clerk, 33–43

  background of, 34–35

  displacement current used by, 37

  Einstein on Galileo-Maxwell paradox, 48–54, 58, 64–65

  electromagnetic wave measurements of, 39–43, 46, 50–51, 68, 74, 109

  impact of research of, 33, 35–36, 48

  light as focus of research of, 33–34, 43, 94

  meetings with Faraday, 36

  Saturn’s rings and, 36

  theory of electricity and magnetism of, 36–39, 48, 94, 218, 219

  Maxwell’s Equations, 38, 43

  McIntyre, Peter, 251

  Meissner, Walther, 195

  Meissner effect, 195–96, 197, 200

  mesons

  Heisenberg’s naming of, 144

  massive vector, 193–94, 211

  muon discovery and, 148–49

  Powell’s research on, 154, 162

  quark-antiquark pairs in, 233–34

  Yukawa’s discovery of, 144–47

  Mills, Robert, 171, 172, 231

  gauge symmetry and, 171–74, 175, 188

  Yang’s collaboration with. See Yang-Mills symmetry

  Minkowski, Hermann

  background of, 65

  Einstein’s reaction to research of, 68

  four-dimensional “space-time” theory of, 66–68, 71

  Minkowski space, 67–68

  M-theory, 288

  motion

  Galileo’s exploration of, 45–48, 49, 70, 97, 168, 245

  as key to a new reality, 70

  muon neutrinos, 132, 133

  muons

  Carl Anderson’s discovery of, 132

  decay of, 61, 152, 160, 162, 179

  Higgs condensate and, 217

  Higgs particles and, 254

  quark families with, 247

  symmetry pairing of, 234

  time dilation in detection of, 61

  tracking of, 223–24

  N

  Nambu, Yoichiro

  background of, 188

  quarks and, 233

  skepticism about ideas of, 202

  superconductivity research of, 188–89, 191

  symmetry breaking and, 183, 188, 189, 200, 202, 204, 207, 214

  Weinberg’s research and, 214

  Nambu-Goldstone (NG) bosons, 188–89, 199–200

  natural selection, 5, 20

  Nature (journal), 118, 128, 148

  Neddermeyer, Seth, 146, 147

  Neptune, prediction of existence of, 94

  neutral currents

  difficulties in testing, 226

  Gargamelle search for, 223, 224–25

  Glashow’s research on, 222, 225, 234

  neutrinos and, 222, 223, 224, 225, 228

  quarks and, 234

  neutrino astrophysics, detectors in, 280–81, 286

  neutrinos, 139

  electron pairing with, in quarks, 234–35, 246–47

  exploding stars and release of, 280

  Fermi’s naming of, 123, 127, 130

  gauge bosons and, 277

  interaction in human body, 136

  muon decay and, 61, 132, 133

  muon tracking experiments using, 223–24

  neutral current interactions and, 222–23, 224, 228

  neutron decay and, 131, 132, 143, 145, 166, 176

  Pauli’s discovery of, 122–23, 130

  spin angular momentum of, 164, 166

  Sun proton interactions producing, 136, 280–81, 298

  W particles and, 253

  Z particles and, 220, 221–22, 225

  neutron decay, Fermi’s research on, 127–29, 130–32, 136, 142, 143, 145–46, 149

  neutrons

  beta decay of, 120, 122

  Chadwick’s research on, 118–19

  decay of, 113

  human radioactivity from instability of, 113, 120

  Joliot-Curies’ experiments on, 117, 118

  measurements of mass of, 119

  Pauli’s research on, 122–23

  Newton, Isaac

  fascination with religion held by, 21–22, 43

  gravity and, 5, 27–28, 38, 48

  Keynes on importance of work of, 20–21

  law of motion of, 48, 72–73, 245

  light as focus of research of, 22–24, 31, 39, 73–74

  Maxwell compared with, 33

  New York Times, 259, 271

  Nobel Prize laureates, 80, 85, 98, 99, 105, 116, 118–19, 123, 127, 128, 130, 134, 136, 142, 148, 153, 158, 161, 169, 175, 177, 183, 184, 186, 193, 204, 205, 211, 213, 218, 228, 235, 239, 245, 254, 262, 271, 279, 281, 295

  Noether, Emmy, 169–70

  Noether’s theorem, 170, 171

  nuclear bomb research, in Manhattan Project, 129

  nucleus

  neutron and proton mass and stability of, 120–21

  potential dangers in releasing energy of, 129

  Rutherford’s discovery of existence of, 114, 116

  O

  observer effect, in quantum mechanics, 90

  Occhialini, Giuseppe, 147–48

  Oersted, Hans Christian, 25–26, 27, 36, 38

  Onnes, Kamerlingh, 184

  Opticks (Newton), 24

  Overbye, Dennis, 271

  P

  Parisi, Giorgio, 238

  parity doubling, 157, 158–59, 162, 168

  parity violation, 158–59, 160, 161, 162, 163, 168, 175, 179, 228

  particle astrophysics, 289

  partons, 233, 237

  Pauli, Wolfgang, 127, 151, 160, 175

  exclusion principle of, 123, 127

  Fermi’s research and, 127

  Heisenberg’s research and, 85–86

  neutrinos and, 130

  neutron research of, 122–23

  parity violation and, 161

  personality of, 123

  Perlmutter, Saul, 295

  phase transition, 183–84, 185, 291, 295, 296, 298

  photoelectric effect, 80–81

  photographic emulsions, tracking cosmic rays in, 147

  photography

  Maxwell’s work on, 33, 35

  space and time interaction in, 56

  supernovas recorded using, 279

  photons. See also quanta

  neutron decay and, 131, 132

  Planck, Max, 78–81, 142

  background of, 78

  Einstein’s relationship with, 80–81

  photons (quanta) research and, 78, 79–80

  radiation research of, 78–81, 89, 115

  research on nucleus makeup and, 115–16

  revolutionary approach to research used by, 78–79

  Planck�
�s constant, 79

  Plato, 11–14, 15, 39, 65, 201

  Plato’s cave allegory, 247, 273–74

  Einstein’s relativity and, 65–66

  experience of reality and, 11

  history of science and, 13, 303

  nature of scientific discoveries illustrated by, 15–17

  philosopher likened to prisoner in, 12–13

  role of light in, 13, 17, 19, 304

  search for meaning as subject of, 11–14, 17

  seeking the “good” in, 14

  Young’s double-slit experiment with light and, 74–76, 77

  Politzer, David, 239, 241, 245, 277

  positrons, Carl Anderson’s discovery of, 94, 117

  Powell, Cecil, 147–48, 154, 156, 157–58, 162, 189

  Principia: Mathematical Principles of Natural Philosophy (Newton), 20–21

  Principle of Least Time, 99

  proton accelerator, CERN, 222–23, 251

  protons, spin angular momentum of, 164

  Pythagoras, 66

  Pythagorean theorem, 66

  Q

  quanta. See also photons

  Einstein’s research on photoelectric effect and, 81

  electromagnetic interactions and, 103, 133

  Planck’s research on, 78, 79–80

  quantum chromodynamics (QCD), 241–43, 244–45

  quantum electrodynamics (QED)

  Feynman’s research on, 99, 102–6, 142, 175, 221, 235

  gauge symmetry in, 111–12

  renormalization and predictions using, 106

  symmetry of electric charges in, 106, 107, 109

  quantum mechanics, 3, 28, 245

  antiparticles and, 97, 100, 102

  behavior of electrons in, 92, 93–94

  Bose-Einstein condensation and, 185–86

  Dirac on need for new approach to, 98, 99

  Dirac’s research on relativity and, 92, 95, 151

  Einstein on probabilistic essence of, 81

  Einstein’s use of probabilistic arguments and, 81

  fermion behavior under rules of, 155

  Feynman on understanding, 71

  first use of term, 84

  Heisenberg on his discovery of, 84, 85–86

  Heisenberg uncertainty principle and, 86

  issues with “interpretation” of, 72–73

  measurement of system altering its behavior in, 77

  observer effect in, 90

  Pauli’s exclusion principle in, 123

  spin angular momentum of particles in, 164

  superconductivity and, 184

  symmetry of electric charges and, 107

  theoretical insights in development of, 151

  theory of intensity interferometer and, 72

  trip in strange, new country analogy for experience of, 83–84

  wave function of the particle in, 87, 114–15

  Young’s double-slit experiment and, 73, 76

  quarks

  Gell-Mann’s research on, 163, 193–94, 231–32, 233–34, 236, 240

  Higgs boson emergence and, 256–57

  origin of name, 193

  Quinn, Helen, 277, 278

  R

  Rabi, I. I., 132, 148

  radiation

  cosmic microwave background (CMB), 290, 292–93

  Dirac’s research on, 98, 114

  Einstein’s research on, 81, 89

  Planck’s research on, 78–81, 89, 115

  radioactivity

  artificial, 119, 128

  Fermi’s research on, 125, 128

  human bodies with, 113, 120

  types of rays in, 119–20

  in uranium, 119

  relativity

  antiparticles and, 97, 100, 102

  clocks relative to moving objects (time dilation) research on, 58–61

  Dirac’s research on quantum mechanics and, 92, 95, 151

  impact of Einstein’s discovery of, 95

  Minkowski’s four-dimensional “space-time” theory and, 66–68, 71

  Plato’s cave allegory and, 65–66

  ruler measurement example of, 65–67

  religion

  compatibility between science and, 21, 22

  early pioneers in science and belief in, 21–22, 43

  Galileo’s belief about Earth and rest and, 45, 46–47

  longing as ultimate motive for exploration in, 6

  role of light in, 19–20

  renormalization, 105–6

  Republic (Plato), 11. See also Allegory of the Cave

  Riess, Adam, 295

  Roosevelt, Franklin D., Einstein’s letter to, 129

  Ross, Graham, 204

  Royal Institution, 25, 26, 36

  Royal Society, 23, 24, 25, 35, 118

  Rubbia, Carlo, 251, 252–54, 262, 270

  Rutherford, Ernest, 114, 116, 118, 119–20

  S

  “sacred,” concept of the, 2, 14–15

  Sakurai, J. J., 192–93, 211

  Salam, Abdus, 183, 204, 214, 218, 219, 221, 222, 223, 225, 228

  Saturn’s rings, Maxwell’s theory on, 36

  Schmidt, Brian, 295

  Schrieffer, Robert, 184, 188

  Schrödinger, Erwin, 85, 86, 87, 92, 93, 95, 98, 99, 151

  Schwinger, Julian, 99, 142, 175–77, 178, 184, 202, 203, 205, 212, 215, 216, 221

  science

  compatibility between religion and, 21, 22

  concept of the “sacred” and, 2, 14–15

  creativity and, 51

  curiosity-driven research in, 26

  intellectual consistency in, 22

  longing as ultimate motive for exploration of hidden world in, 6

  religiosity of the early pioneers in, 21–22

  understanding our place in universe using, 30

  scientific method, 3, 14

  Scottish Universities Summer School in Physics, 203–4

  Sommerfeld, Arnold, 85, 134

  Special Theory of Relativity (Einstein), 68, 80

  speed of light

  Einstein’s research on clocks relative to moving objects (time dilation) and, 58–61

  Fizeau’s formula for, 42

  shared reality and, 56

  Standard Model

  creation and verification of, 245, 249

  Higgs field and, 271

  Higgs particle mass and, 254–55

  limitation of, 5

  neutrino masses and, 281

  Stanford Linear Accelerator (SLAC), 223, 226–27, 228, 232–33, 237, 238, 239, 241, 244, 245

  statistical mechanics, 35–36, 127

  Sudarshan, George, 162–63, 164

  Sudbury Neutrino Observatory (SNO), Canada, 281

  Sundaresan, M. K., 135

  Superconducting Super Collider (SSC), 260–62, 278

  superconductivity

  Bardeen-Cooper-Schrieffer (BCS) theory of, 187, 188

  discovery of, 184

  initial lack of recognition of importance of, 200

  spontaneous symmetry breaking in, 189

  superconductors

  high-temperature, 194–95

  Meissner effect in, 195–96

  Super-Kamiokande detector, Japan, 280, 281

  supernovas

  Chandra’s theory on, 153

  neutrinos in, 279–80

  Super Proton Synchrotron (SPS), CERN, 251–52, 260, 262

  Symanzik, Kurt, 237

  symmetries

  chessboard analogy to explain conservation of energy in, 107

  electric charges in quantum electrodynamics (QED) with, 106, 107, 109

  of physical law with time, 106–7

  symmetry breaking

  examples of, 182–83

  Goldstone bosons in, 214

  Higgs’s research on, 205–6, 207

  massless particles and, 202–3, 205, 246

  Nambu-Goldstone (NG) bosons and, 188, 189

  Nambu’s research on, 183, 189, 200, 202, 204, 207, 214

  Weinberg’
s research on nuclear masses using, 214

  T

  tau particles, 157, 158, 247, 272

  Taylor, Richard, 232–33

  Telegdi, Val, 160

  Teller, Edward, 153

  Tevatron, Fermilab (Batavia, Illinois), 262–63

  theta mesons, 154

  theta particles, 157, 158

  ’t Hooft, Gerardus, 204, 220–21, 222, 223, 237

  background of, 220–21

  thorium, in nuclear decay experiments, 128

  time dilation

  Einstein’s research on clocks relative to moving objects and, 58–61

  muon cosmic ray detection and, 61

  Tomonaga, Sin-Itiro, 99, 142

  top quarks, 247, 257, 258, 263, 284

  Turner, Michael, 295

  Twiss, Richard, 72

  U

  Universal Law of Gravity, 48

  Universe from Nothing, A (Krauss), 3–4, 214, 289–90

  uranium

  nuclear decay experiments using, 128, 129

  radioactivity in, 119

  Ussher, Bishop James, 133

  V

  van der Meer, Simon, 252, 254

  van Gogh, Vincent, 55–56

  V-A theory of weak interaction, 164

  vector mesons, 193–94, 211

  vector spin, 193

  Veltman, Martinus (“Tini”), 203, 204, 220, 221, 223, 237

  W

  wave function of particles, 77, 87

  Heisenberg’s uncertainty relation on, 89–90

  mathematical behavior of groups or pairs of particles and, 155–56

  specific frequency of, for each particle, 90

  wave theory of light

  Newton and, 22, 23, 24

  Young’s double-slit experiment with light and, 73–76, 77–78, 88

  W bosons, 216–17, 250, 254, 271

  weak interaction

  Fermi’s theory of, 161, 162, 164

  V-A theory of, 164

  Weinberg’s research on, 215–18, 219, 221, 223, 225–26

  Weinberg, Steven, 204, 212–18, 276, 277, 278, 296

  background of, 212–13

  electroweak unification model and, 222, 228

  Glashow’s research and, 212–13, 218

  Krauss’s education and, 213–14

  quantum field theory and, 214

  research approach of, 213–14

  response to paper of, 219

  symmetry breaking and, 214–16

  weak interaction theories of, 215–18, 219, 221, 223, 225–26

  Z boson discovered by, 217

  Weinrich, Marcel, 160

  Weisskopf, Victor, 160, 202, 269

  Weyl, Hermann, 110–11

  Wieman, Carl, 186

  Wigner, Eugene, 158, 169

  Wilczek, Frank, 36, 238–39, 240, 241, 245, 277, 293

  Wilson, Robert R., 30–31, 261

  Witten, Edward, 238, 283

  W plus and W minus bosons, 216. See also W bosons

  Wu, Chien-Shiung, 159–60, 161

  Y

  Yang, Chen-Ning, 152–53

  background of, 152–54

  parity doubling concept of, 157, 158–59, 161, 168

 

‹ Prev