The Walking Whales

Home > Other > The Walking Whales > Page 36
The Walking Whales Page 36

by J G M Hans Thewissen


  8. M. D. Uhen, N. D. Pyenson, T. J. Devries, M. Urbina, and P. R. Renne,

  “New Middle Eocene Whales from the Pisco Basin of Peru,”  Journal of Paleon-

  tology 85 (2011): 955–69.

  9. M. T. Clementz, A. Goswami, P. D. Gingerich, and P. L. Koch, “Isotopic

  Records from Early Whales and Sea Cows: Contrasting Patterns of Ecological

  Transition,”  Journal of Vertebrate Paleontology 26 (2006): 355–70.

  10. See figure 50.

  11. S. Bajpai and J. G. M. Thewissen, 1998, “Middle Eocene Cetaceans from

  the Harudi and Subathu Formations of India,” in  Emergence of Whales: Evolu-

  tionary Patterns in the Origin of Cetacea, ed. J. G. M. Thewissen (New York:

  Plenum Press, 1988), 213–33.

  12.  P.  D.  Gingerich,  M.  ul-Haq,  I.  H.  Khan,  and  I.  S.  Zalmout, “Eocene

  Stratigraphy and Archaeocete Whales (Mammalia, Cetacea) of Drug Lahar in

  the Eastern Sulaiman Range, Balochistan (Pakistan),”  Contributions from the

  Museum of Paleontology, University of Michigan 30 (2001): 269–319.

  13. P. D. Gingerich, I. S. Zalmout, M. ul-Haq, and M. A. Bhatti, “Makarace-

  tus bidens, a New Protocetid Archaeocete (Mammalia, Cetacea) from the Early

  Middle Eocene of Balochistan (Pakistan),”  Contributions from the Museum of

  Paleontology, University of Michigan 31 (2005): 197–210.

  14. J. G. M. Thewissen, J. C. George, C. Rosa, and T. Kishida, “Olfaction and

  Brain Size in the Bowhead Whale ( Balaena mysticetus),”  Marine Mammal Sci-

  ence 27 (2011): 282–94.

  15. H. H. A. Oelschläger and J. S. Oelschläger, “Brain,” in  Encyclopedia of

  Marine Mammals (1st ed.), ed. W. F. Perrin, B. Würsig, and J. G. M. Thewissen

  (San Diego, CA: Academic Press, 2002), 133–58.

  16. S. J. Godfrey, J. Geisler, and E. M. G. Fitzgerald, “On the Olfactory Anat-

  omy  in  an  Archaic  Whale  (Protocetidae,  Cetacea)  and  the  Minke  Whale

  Balaenoptera acutorostrata  (Balaenopteridae,  Cetacea),”  Anatomical Record

  296 (2013): 257–72.

  17. T. Edinger, “Hearing and Smell in Cetacean History,”  Monatschrift für

  Psychiatrie und Neurologie 129 (1955): 37–58.

  18.  P.  A.  Brennan  and  F.  Zufall,  “Pheromonal  Communication  in  Verte-

  brates,”  Nature 444 (2006): 308–15.

  19. J. Henderson, R. Altieri, and D. Müller-Schwarze, “The Annual Cycle of

  Flehmen in Black-Tailed Deer ( Odocoileus hemionis columbianus),”  Journal of

  Chemical Ecology 6 (1980): 537–57.

  20.  J.  E.  King,  Seals of the World  (New  York:  Cornell  University  Press,

  1983).

  21. R. A. Dart, “The Brain of the Zeuglodontidae (Cetacea),”  Proceedings of

  the Zoological Society, London 42 (1923): 615–54.

  22. S. Bajpai, J. G. M. Thewissen, and A. Sahni. “Indocetus (Cetacea, Mam-

  malia) Endocasts from Kachchh (India),”  Journal of Vertebrate Paleontology 16

  (1996): 582–84

  23. H. J. Jerison,  Evolution of the Brain and Intelligence (New York: Aca-

  demic Press, 1973).

  24. L. Marino, “Cetacean Brain Evolution: Multiplication Generates Com-

  plexity,”  International Journal of Comparative Psychology 17 (2004): 1–16.

  228    |    Notes

  25. In sea lions, which swim with their forelimbs, the longest finger is 1.7

  times as long as the first part of the limb (the humerus). In seals, which swim

  with their hind limb, the longest toe/femur ratio is 2.4. In  Ambulocetus, this

  ratio is 1.1, and in the protocetids  Rodhocetus and  Maiacetus it is  0.95 and

  0.79,  respectively.  The  small  foot  of  the  protocetids  suggests  that  it  is  less

  involved in propulsion than that of ambulocetids.

  26. A. W. English. “Limb Movements and Locomotor Function in the Cali-

  fornia Sea Lion ( Zalophus californianus),”  Journal of the Zoological Society of

  London 178 (1976): 341–64.

  27. P. D. Gingerich, “Land-to-Sea Transition of Early Whales: Evolution of

  Eocene Archaeoceti (Cetacea) in Relation to Skeletal Proportions and Locomo-

  tion of Living Semiaquatic Mammals,”  Paleobiology 29 (2003): 429–54.

  28. M. D. Uhen, “Form, Function, and Anatomy of  Dorudon atrox (Mam-

  malia,  Cetacea): An Archaeocete  from  the  Middle  to  Late  Eocene  of  Egypt,”

  University of Michigan, Papers on Paleontology 34 (2004): 1–222.

  29. V. de Buffrénil, A. de Ricqlès, C. E. Ray, and D. P. Domning, “Bone His-

  tology of the Ribs of the Archaeocetes (Mammalia, Cetacea),”  Journal of Verte-

  brate Paleontology 10 (1990): 455–66.

  30. Y. Narita and S. Kuratani, “Evolution of the Vertebral Formulae in Mam-

  mals: A Perspective on Developmental Constraints,”  Journal of Experimental

  Zoology B: Molecular and Developmental Evolution 15 (2005): 91–106.

  31. J. G. M. Thewissen, L. N. Cooper, and R. R. Behringer, “Developmental

  Biology Enriches Paleontology,”  Journal of Vertebrate Paleontology 32 (2012):

  1224–34.

  32. E. M. Williams, “Synopsis of the Earliest Cetaceans: Pakicetidae, Ambu-

  locetidae,  Remingtonocetidae,  and  Protocetidae,”  in  Emergence of Whales:

  Evolutionary Patterns in the Origin of Cetacea, ed. J. G. M. Thewissen (New

  York: Plenum Press, 1988), 1–28.

  33. P. D. Gingerich, M. ul-Haq, W. v. Koenigswald, W. J. Sanders, B. H. Smith,

  and I. S. Zalmout, “New Protocetid Whale from the Middle Eocene of Pakistan:

  Birth on Land, Precocial Development, and Sexual Dimorphism,  PLoS One 4

  (2009): e4366, doi:10.1371/journal.pone.0004366.

  34. E. Fraas, “Neue Zeuglodonten aus dem unteren Mitteleozän von Mokat-

  tam  bei  Cairo,”  Geologische und Paläontologische Abhandlungen  6  (1904):

  199–220.

  chapter 13. from embryos to evolution

  1. This hunt was exposed, years later, in the Academy Award–winning movie

  The Cove.

  2. Reviewed in L. Bejder and B. K. Hall, “Limbs in Whales and Limblessness

  in Other Vertebrates: Mechanisms of Evolutionary and Developmental Trans-

  formation and Loss,”  Evolution and Development 4 (2002): 445–58.

  3. R. C. Andrews, “A Remarkable Case of External Hind Limbs in a Hump-

  back Whale,”  American Museu
m Novitates 9 (1921): 1–6.

  4. At the time of writing, Haruka was alive, but the dolphin died in April,

  2013.

  Notes    |    229

  5.  R.  O’Rahilly  and  F.  Müller,  Developmental Stages in Human Embryos

  (Washington, DC: Carnegie Institute of Washington, 1987).

  6.  Proteins  often  have  remarkably  inappropriate,  cumbersome,  or  silly

  names, so in publications they are usually just referred to by a letter–number

  combination such as this one.

  7. J.-D. Bénazet and R. Zeller, “Vertebrate Limb Development: Moving from

  Classical Morphogen Gradients to an Integrated 4-dimensional Patterning Sys-

  tem,”  Cold Spring Harbor Perspectives on Biology 1(2009): a001339.

  8. B. D. Harfe, P. J. Scherz, S. Nissin, H. Tiam, A. P. McMahon, and C. J. Tabin,

  “Evidence for an Expansion-Based Temporal SHH Gradient in Specifying Ver-

  tebrate Digit Identities,”  Cell 118 (2004): 517–28.

  9. L. N. Cooper, A. Berta, S. D. Dawson, and J. S. Reidenberg, “Evolution of

  Hyperphalangy  and  Digit  Reduction  in  the  Cetacean  Manus,”  Anatomical

  Record 290 (2007): 654–72.

  10. W. Kükenthal, “Vergleichend anatomische und entwicklungsgeschichtli-

  che  Untersuchungen  an Waltieren,”  Denkschrifte der Medizinische-Naturwis-

  senschaftliche Gesellschaft, Jena 75 (1893): 1–448.

  11. G. Guldberg and F. Nansen,  On the Development and Structure of the

  Whale, Part  1: On the Development of the Dolphin (Bergen, Norway: J. Grieg,

  1894).

  12. W. Kükenthal, “Ueber Rudimente von Hinterflosse bei Embryonen von

  Walen,”  Anatomischer Anzeiger (1895): 534–37.

  13. E. Bresslau,  The Mammary Apparatus of the Mammalia in the Light of

  Ontogenesis and Phylogenesis (London: Methuen, 1920).

  14. G. Guldberg, “Neue Untersuchungen über die Rudimente von Hinterflos-

  sen und die Milchdrüsenanlage bei jungen Delphinenembryonen,”  Internation-

  ales Monatschrift für Anatomie und Physiologie 4 (1899): 301–20.

  15. M. S. Anderssen, “Studier over mammarorganernes utvikling hos  Phocaena

  communis, ”  Bergens Museum Aarbok, Naturvidensk. R.  3 (1917–1918): 1–45.

  http://www.biodiversitylibrary.org/item/130733#page/

  16. J. G. M. Thewissen, M. J. Cohn, L. S. Stevens, S. Bajpai, J. Heyning, and

  W. E. Horton, Jr., “Developmental Basis for Hind-Limb Loss in Dolphins and

  the Origin of the Cetacean Bodyplan,”  Proceedings of the National Academy of

  Sciences 103 (2007): 8414–18.

  17. M. D. Shapiro, J. Hanken, and N. Rosenthal, “Developmental Basis of

  Evolutionary Digit Loss in the Australian Lizard  Hemiergis,”  Journal of Experi-

  mental Zoology 297 (2003): 48–57.

  18.  H.  Ito,  K.  Koizumi,  H.  Ichishima,  S.  Uchida,  K.  Hayashi,  K.  Ueda, Y.

  Uezu, , H. Shirouzu, T. Kirihata, M. Yoshioka, S. Ohsumi, and H. Kato, “Inner

  Structure of the Fin-Shaped Hind Limbs of a Bottlenose Dolphin ( Tursiops trun-

  catus),”  Abstracts, Biennial Conference on the Biology of Marine Mammals,

  Tampa, Florida (2011), 142.

  chapter 14. before whales

  1. J. H. Geisler and M. D. Uhen, “Morphological Support for a Close Rela-

  tionship between Hippos and Whales,”  Journal of Vertebrate Paleontology 23

  (2003): 991–96.

  230    |    Notes

  2.  A.  Ranga  Rao,  “New  Mammals  from  Murree  (Kalakot  Zone)  of  the

  Himalayan Foot Hills Near Kalakot, Jammu & Kashmir State, India,”  Journal

  of the Geological Society of India 12 (1971): 125–34. A. Ranga Rao, “Further

  Studies on the Vertebrate Fauna of Kalakot, India,”  Directorate of Geology, Oil

  and Natural Gas Commission, Dehradun, Special Paper 1 (1972): 1–22.

  3.  J. G. M.  Thewissen,  L. N.  Cooper,  M. T.  Clementz,  S.  Bajpai,  and  B. N.

  Tiwari, “Whales Originated from Aquatic Artiodactyls in the Eocene Epoch of

  India,”  Nature 450 (2007): 1190–94.

  4. A.  Sahni  and  S. K.  Khare, “Three  New  Eocene  Mammals  from  Rajauri

  District, Jammu and Kashmir,”  Journal of the Paleontological Society of India,

  16 (1971): 41–53. A. Sahni and S. K. Khare, “Additional Eocene Mammals from

  the Subathu Formation of Jammu and Kashmir,”  Journal of the Palaeontological

  Society of India 17 (1973): 31–49. J. G. M. Thewissen, E. M. Williams, and S. T.

  Hussain, “Eocene Mammal Faunas from Northern Indo-Pakistan,”  Journal of

  Vertebrate Paleontology 21 (2001): 347–66.

  5. J. H. Geisler and J. M. Theodor, “Hippopotamus and Whale Phylogeny,”

  Nature 458 (2009):  1–4.  J.  Gatesy,  J. H.  Geisler,  J.  Chang, C. Buell, A. Berta,

  R. W. Meredith, M. S. Springer, and M. R. McGowen, “Phylogenetic Blueprint

  for  a  Modern Whale,”  Molecular Phylogeny and Evolution  66  (2013):  479–

  506.

  6.  M.  Spaulding,  M. A.  O’Leary,  and  J.  Gatesy, “Relationships  of  Cetacea

  (Artiodactyla) among Mammals: Increased Taxon Sampling Alters Interpreta-

  tions of Key Fossils and Character Evolution,”  Plos One 4 (2009): E7062.

  7.J. Gatesy, J. H. Geisler, J. Chang, C. Buell, A. Berta, R. W. Meredith, M. S.

  Springer, and M R. McGowen (2013) “A phylogenetic blueprint for a modern

  whale.”  Molecular phylogenetics and evolution 66:479–506.

  8. See note 3.

  9. L. N. Cooper, J. G. M. Thewissen, S. Bajpai, and B. N. Tiwari, “Postcranial

  Morphology and Locomotion of the Eocene Raoellid  Indohyus (Artiodactyla:

  Mammalia),”  Historical Biology 24 (2011): 279–310.  http://dx.doi.org/10.108

  0/08912963.2011.624184.

  10. G. Dubost, “Un aperçu sur l’écologie du chevrotain africain  Hyemoschus

  aquaticus Ogilby, Artiodactyle Tragulide,”  Mammalia 42 (1978): 1–62. E. Mei-

  jaard,  U.  Umilaela,  and  G.  deSilva Wijeyeratne, “Aquatic  Escape  Behavior  in

  Mouse-Deer  Provides  Insights  into Tragulid  Evolution,”  Mammalian Biology

  2009: 1–3.

  chapter 15. the way forward

  1. A. S. Tucker and P. Sharpe, “The Cutting-Edge of Mammalian Develop-

  ment:  How  the  Embryo  Makes  Teeth,”  Nature Reviews, Genetics  5  (2004):

  499–508.

  2. J. T. Streelman and R. C. Albertson, “Evolution of Novelty in the Cichlid
r />   Dentition,”  Journal of Experimental Zoology Part B: Molecular and Develop-

  mental Evolution 306 (2006): 216–26. G. J. Fraser, R. F. Bloomquist, and J. T.

  Streelman, “A Periodic Pattern Generator for Dental Diversity,”  BMC Biology 6

  (2008): 32. doi:10.1186/1741–7007–6–32.

  Notes    |    231

  3. P. M. Munne, S. Felszeghy, M. Jussila, M. Suomalainen, I. Thesleff, and J.

  Jernvall, “Splitting Placodes: Effects of Bone Morphogenetic Protein and Activin

  on the Patterning and Identity of Mouse Incisors,”  Evolution and Development

  12 (2010): 383–92.

  4. B. A. Armfield, Z. Zheng, S. Bajpai, C. J. Vinyard, and J. G. M. Thewissen,

  “Development  and  Evolution  of  the  Unique  Cetacean  Dentition,”  PeerJ  1

  (2013): E24. doi:10.7717/peerj.24.

  5. See note 4.

  6. K. Karlsen, “Development of Tooth Germs and Adjacent Structures in the

  Whalebone Whale ( Balaenoptera physalus L.) with a Contribution to the Theo-

  ries of the Mammalian Tooth Development,”  Hvalradets Skrifter Norske Viden-

  skaps-Akademi Olso 45 (1962): 1–56.

  7.  M. C. V.  Dissel-Scherft  and  W.  Vervoort, “Development  of  the  Teeth  in

  Fetal  Balaenoptera physalus  (L.)  (Cetacea,  Mystacoceti),”  Proceedings of the

  Koninklijke Nederlandse Akademie Der Wetenschappen, Serie C  57  (1954):

  196–210.

  8. H. Ishikawa and H. Amasaki, “Development and Physiological Degrada-

  tion of Tooth Buds and Development of Rudiment of Baleen Plate in Southern

  Minke Whale,  Balaenoptera acutorostrata,”  Journal of Veterinary Medical Sci-

  ence 57 (1995): 665–70. H. Ishikawa, H. Amasaki, A. Dohguchi, A. Furuya, and

  K. Suzuki, “Immunohistological Distributions of Fibronectin, Tenascin, Type I,

  III and IV Collagens, and Laminin during Tooth Development and Degenera-

  tion in Fetuses of Minke Whale,  Balaenoptera acutorostrata,”  Journal of Veteri-

  nary Medical Science 61 (1999): 227–32.

 

‹ Prev