8. M. D. Uhen, N. D. Pyenson, T. J. Devries, M. Urbina, and P. R. Renne,
“New Middle Eocene Whales from the Pisco Basin of Peru,” Journal of Paleon-
tology 85 (2011): 955–69.
9. M. T. Clementz, A. Goswami, P. D. Gingerich, and P. L. Koch, “Isotopic
Records from Early Whales and Sea Cows: Contrasting Patterns of Ecological
Transition,” Journal of Vertebrate Paleontology 26 (2006): 355–70.
10. See figure 50.
11. S. Bajpai and J. G. M. Thewissen, 1998, “Middle Eocene Cetaceans from
the Harudi and Subathu Formations of India,” in Emergence of Whales: Evolu-
tionary Patterns in the Origin of Cetacea, ed. J. G. M. Thewissen (New York:
Plenum Press, 1988), 213–33.
12. P. D. Gingerich, M. ul-Haq, I. H. Khan, and I. S. Zalmout, “Eocene
Stratigraphy and Archaeocete Whales (Mammalia, Cetacea) of Drug Lahar in
the Eastern Sulaiman Range, Balochistan (Pakistan),” Contributions from the
Museum of Paleontology, University of Michigan 30 (2001): 269–319.
13. P. D. Gingerich, I. S. Zalmout, M. ul-Haq, and M. A. Bhatti, “Makarace-
tus bidens, a New Protocetid Archaeocete (Mammalia, Cetacea) from the Early
Middle Eocene of Balochistan (Pakistan),” Contributions from the Museum of
Paleontology, University of Michigan 31 (2005): 197–210.
14. J. G. M. Thewissen, J. C. George, C. Rosa, and T. Kishida, “Olfaction and
Brain Size in the Bowhead Whale ( Balaena mysticetus),” Marine Mammal Sci-
ence 27 (2011): 282–94.
15. H. H. A. Oelschläger and J. S. Oelschläger, “Brain,” in Encyclopedia of
Marine Mammals (1st ed.), ed. W. F. Perrin, B. Würsig, and J. G. M. Thewissen
(San Diego, CA: Academic Press, 2002), 133–58.
16. S. J. Godfrey, J. Geisler, and E. M. G. Fitzgerald, “On the Olfactory Anat-
omy in an Archaic Whale (Protocetidae, Cetacea) and the Minke Whale
Balaenoptera acutorostrata (Balaenopteridae, Cetacea),” Anatomical Record
296 (2013): 257–72.
17. T. Edinger, “Hearing and Smell in Cetacean History,” Monatschrift für
Psychiatrie und Neurologie 129 (1955): 37–58.
18. P. A. Brennan and F. Zufall, “Pheromonal Communication in Verte-
brates,” Nature 444 (2006): 308–15.
19. J. Henderson, R. Altieri, and D. Müller-Schwarze, “The Annual Cycle of
Flehmen in Black-Tailed Deer ( Odocoileus hemionis columbianus),” Journal of
Chemical Ecology 6 (1980): 537–57.
20. J. E. King, Seals of the World (New York: Cornell University Press,
1983).
21. R. A. Dart, “The Brain of the Zeuglodontidae (Cetacea),” Proceedings of
the Zoological Society, London 42 (1923): 615–54.
22. S. Bajpai, J. G. M. Thewissen, and A. Sahni. “Indocetus (Cetacea, Mam-
malia) Endocasts from Kachchh (India),” Journal of Vertebrate Paleontology 16
(1996): 582–84
23. H. J. Jerison, Evolution of the Brain and Intelligence (New York: Aca-
demic Press, 1973).
24. L. Marino, “Cetacean Brain Evolution: Multiplication Generates Com-
plexity,” International Journal of Comparative Psychology 17 (2004): 1–16.
228 | Notes
25. In sea lions, which swim with their forelimbs, the longest finger is 1.7
times as long as the first part of the limb (the humerus). In seals, which swim
with their hind limb, the longest toe/femur ratio is 2.4. In Ambulocetus, this
ratio is 1.1, and in the protocetids Rodhocetus and Maiacetus it is 0.95 and
0.79, respectively. The small foot of the protocetids suggests that it is less
involved in propulsion than that of ambulocetids.
26. A. W. English. “Limb Movements and Locomotor Function in the Cali-
fornia Sea Lion ( Zalophus californianus),” Journal of the Zoological Society of
London 178 (1976): 341–64.
27. P. D. Gingerich, “Land-to-Sea Transition of Early Whales: Evolution of
Eocene Archaeoceti (Cetacea) in Relation to Skeletal Proportions and Locomo-
tion of Living Semiaquatic Mammals,” Paleobiology 29 (2003): 429–54.
28. M. D. Uhen, “Form, Function, and Anatomy of Dorudon atrox (Mam-
malia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt,”
University of Michigan, Papers on Paleontology 34 (2004): 1–222.
29. V. de Buffrénil, A. de Ricqlès, C. E. Ray, and D. P. Domning, “Bone His-
tology of the Ribs of the Archaeocetes (Mammalia, Cetacea),” Journal of Verte-
brate Paleontology 10 (1990): 455–66.
30. Y. Narita and S. Kuratani, “Evolution of the Vertebral Formulae in Mam-
mals: A Perspective on Developmental Constraints,” Journal of Experimental
Zoology B: Molecular and Developmental Evolution 15 (2005): 91–106.
31. J. G. M. Thewissen, L. N. Cooper, and R. R. Behringer, “Developmental
Biology Enriches Paleontology,” Journal of Vertebrate Paleontology 32 (2012):
1224–34.
32. E. M. Williams, “Synopsis of the Earliest Cetaceans: Pakicetidae, Ambu-
locetidae, Remingtonocetidae, and Protocetidae,” in Emergence of Whales:
Evolutionary Patterns in the Origin of Cetacea, ed. J. G. M. Thewissen (New
York: Plenum Press, 1988), 1–28.
33. P. D. Gingerich, M. ul-Haq, W. v. Koenigswald, W. J. Sanders, B. H. Smith,
and I. S. Zalmout, “New Protocetid Whale from the Middle Eocene of Pakistan:
Birth on Land, Precocial Development, and Sexual Dimorphism, PLoS One 4
(2009): e4366, doi:10.1371/journal.pone.0004366.
34. E. Fraas, “Neue Zeuglodonten aus dem unteren Mitteleozän von Mokat-
tam bei Cairo,” Geologische und Paläontologische Abhandlungen 6 (1904):
199–220.
chapter 13. from embryos to evolution
1. This hunt was exposed, years later, in the Academy Award–winning movie
The Cove.
2. Reviewed in L. Bejder and B. K. Hall, “Limbs in Whales and Limblessness
in Other Vertebrates: Mechanisms of Evolutionary and Developmental Trans-
formation and Loss,” Evolution and Development 4 (2002): 445–58.
3. R. C. Andrews, “A Remarkable Case of External Hind Limbs in a Hump-
back Whale,” American Museu
m Novitates 9 (1921): 1–6.
4. At the time of writing, Haruka was alive, but the dolphin died in April,
2013.
Notes | 229
5. R. O’Rahilly and F. Müller, Developmental Stages in Human Embryos
(Washington, DC: Carnegie Institute of Washington, 1987).
6. Proteins often have remarkably inappropriate, cumbersome, or silly
names, so in publications they are usually just referred to by a letter–number
combination such as this one.
7. J.-D. Bénazet and R. Zeller, “Vertebrate Limb Development: Moving from
Classical Morphogen Gradients to an Integrated 4-dimensional Patterning Sys-
tem,” Cold Spring Harbor Perspectives on Biology 1(2009): a001339.
8. B. D. Harfe, P. J. Scherz, S. Nissin, H. Tiam, A. P. McMahon, and C. J. Tabin,
“Evidence for an Expansion-Based Temporal SHH Gradient in Specifying Ver-
tebrate Digit Identities,” Cell 118 (2004): 517–28.
9. L. N. Cooper, A. Berta, S. D. Dawson, and J. S. Reidenberg, “Evolution of
Hyperphalangy and Digit Reduction in the Cetacean Manus,” Anatomical
Record 290 (2007): 654–72.
10. W. Kükenthal, “Vergleichend anatomische und entwicklungsgeschichtli-
che Untersuchungen an Waltieren,” Denkschrifte der Medizinische-Naturwis-
senschaftliche Gesellschaft, Jena 75 (1893): 1–448.
11. G. Guldberg and F. Nansen, On the Development and Structure of the
Whale, Part 1: On the Development of the Dolphin (Bergen, Norway: J. Grieg,
1894).
12. W. Kükenthal, “Ueber Rudimente von Hinterflosse bei Embryonen von
Walen,” Anatomischer Anzeiger (1895): 534–37.
13. E. Bresslau, The Mammary Apparatus of the Mammalia in the Light of
Ontogenesis and Phylogenesis (London: Methuen, 1920).
14. G. Guldberg, “Neue Untersuchungen über die Rudimente von Hinterflos-
sen und die Milchdrüsenanlage bei jungen Delphinenembryonen,” Internation-
ales Monatschrift für Anatomie und Physiologie 4 (1899): 301–20.
15. M. S. Anderssen, “Studier over mammarorganernes utvikling hos Phocaena
communis, ” Bergens Museum Aarbok, Naturvidensk. R. 3 (1917–1918): 1–45.
http://www.biodiversitylibrary.org/item/130733#page/
16. J. G. M. Thewissen, M. J. Cohn, L. S. Stevens, S. Bajpai, J. Heyning, and
W. E. Horton, Jr., “Developmental Basis for Hind-Limb Loss in Dolphins and
the Origin of the Cetacean Bodyplan,” Proceedings of the National Academy of
Sciences 103 (2007): 8414–18.
17. M. D. Shapiro, J. Hanken, and N. Rosenthal, “Developmental Basis of
Evolutionary Digit Loss in the Australian Lizard Hemiergis,” Journal of Experi-
mental Zoology 297 (2003): 48–57.
18. H. Ito, K. Koizumi, H. Ichishima, S. Uchida, K. Hayashi, K. Ueda, Y.
Uezu, , H. Shirouzu, T. Kirihata, M. Yoshioka, S. Ohsumi, and H. Kato, “Inner
Structure of the Fin-Shaped Hind Limbs of a Bottlenose Dolphin ( Tursiops trun-
catus),” Abstracts, Biennial Conference on the Biology of Marine Mammals,
Tampa, Florida (2011), 142.
chapter 14. before whales
1. J. H. Geisler and M. D. Uhen, “Morphological Support for a Close Rela-
tionship between Hippos and Whales,” Journal of Vertebrate Paleontology 23
(2003): 991–96.
230 | Notes
2. A. Ranga Rao, “New Mammals from Murree (Kalakot Zone) of the
Himalayan Foot Hills Near Kalakot, Jammu & Kashmir State, India,” Journal
of the Geological Society of India 12 (1971): 125–34. A. Ranga Rao, “Further
Studies on the Vertebrate Fauna of Kalakot, India,” Directorate of Geology, Oil
and Natural Gas Commission, Dehradun, Special Paper 1 (1972): 1–22.
3. J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai, and B. N.
Tiwari, “Whales Originated from Aquatic Artiodactyls in the Eocene Epoch of
India,” Nature 450 (2007): 1190–94.
4. A. Sahni and S. K. Khare, “Three New Eocene Mammals from Rajauri
District, Jammu and Kashmir,” Journal of the Paleontological Society of India,
16 (1971): 41–53. A. Sahni and S. K. Khare, “Additional Eocene Mammals from
the Subathu Formation of Jammu and Kashmir,” Journal of the Palaeontological
Society of India 17 (1973): 31–49. J. G. M. Thewissen, E. M. Williams, and S. T.
Hussain, “Eocene Mammal Faunas from Northern Indo-Pakistan,” Journal of
Vertebrate Paleontology 21 (2001): 347–66.
5. J. H. Geisler and J. M. Theodor, “Hippopotamus and Whale Phylogeny,”
Nature 458 (2009): 1–4. J. Gatesy, J. H. Geisler, J. Chang, C. Buell, A. Berta,
R. W. Meredith, M. S. Springer, and M. R. McGowen, “Phylogenetic Blueprint
for a Modern Whale,” Molecular Phylogeny and Evolution 66 (2013): 479–
506.
6. M. Spaulding, M. A. O’Leary, and J. Gatesy, “Relationships of Cetacea
(Artiodactyla) among Mammals: Increased Taxon Sampling Alters Interpreta-
tions of Key Fossils and Character Evolution,” Plos One 4 (2009): E7062.
7.J. Gatesy, J. H. Geisler, J. Chang, C. Buell, A. Berta, R. W. Meredith, M. S.
Springer, and M R. McGowen (2013) “A phylogenetic blueprint for a modern
whale.” Molecular phylogenetics and evolution 66:479–506.
8. See note 3.
9. L. N. Cooper, J. G. M. Thewissen, S. Bajpai, and B. N. Tiwari, “Postcranial
Morphology and Locomotion of the Eocene Raoellid Indohyus (Artiodactyla:
Mammalia),” Historical Biology 24 (2011): 279–310. http://dx.doi.org/10.108
0/08912963.2011.624184.
10. G. Dubost, “Un aperçu sur l’écologie du chevrotain africain Hyemoschus
aquaticus Ogilby, Artiodactyle Tragulide,” Mammalia 42 (1978): 1–62. E. Mei-
jaard, U. Umilaela, and G. deSilva Wijeyeratne, “Aquatic Escape Behavior in
Mouse-Deer Provides Insights into Tragulid Evolution,” Mammalian Biology
2009: 1–3.
chapter 15. the way forward
1. A. S. Tucker and P. Sharpe, “The Cutting-Edge of Mammalian Develop-
ment: How the Embryo Makes Teeth,” Nature Reviews, Genetics 5 (2004):
499–508.
2. J. T. Streelman and R. C. Albertson, “Evolution of Novelty in the Cichlid
r /> Dentition,” Journal of Experimental Zoology Part B: Molecular and Develop-
mental Evolution 306 (2006): 216–26. G. J. Fraser, R. F. Bloomquist, and J. T.
Streelman, “A Periodic Pattern Generator for Dental Diversity,” BMC Biology 6
(2008): 32. doi:10.1186/1741–7007–6–32.
Notes | 231
3. P. M. Munne, S. Felszeghy, M. Jussila, M. Suomalainen, I. Thesleff, and J.
Jernvall, “Splitting Placodes: Effects of Bone Morphogenetic Protein and Activin
on the Patterning and Identity of Mouse Incisors,” Evolution and Development
12 (2010): 383–92.
4. B. A. Armfield, Z. Zheng, S. Bajpai, C. J. Vinyard, and J. G. M. Thewissen,
“Development and Evolution of the Unique Cetacean Dentition,” PeerJ 1
(2013): E24. doi:10.7717/peerj.24.
5. See note 4.
6. K. Karlsen, “Development of Tooth Germs and Adjacent Structures in the
Whalebone Whale ( Balaenoptera physalus L.) with a Contribution to the Theo-
ries of the Mammalian Tooth Development,” Hvalradets Skrifter Norske Viden-
skaps-Akademi Olso 45 (1962): 1–56.
7. M. C. V. Dissel-Scherft and W. Vervoort, “Development of the Teeth in
Fetal Balaenoptera physalus (L.) (Cetacea, Mystacoceti),” Proceedings of the
Koninklijke Nederlandse Akademie Der Wetenschappen, Serie C 57 (1954):
196–210.
8. H. Ishikawa and H. Amasaki, “Development and Physiological Degrada-
tion of Tooth Buds and Development of Rudiment of Baleen Plate in Southern
Minke Whale, Balaenoptera acutorostrata,” Journal of Veterinary Medical Sci-
ence 57 (1995): 665–70. H. Ishikawa, H. Amasaki, A. Dohguchi, A. Furuya, and
K. Suzuki, “Immunohistological Distributions of Fibronectin, Tenascin, Type I,
III and IV Collagens, and Laminin during Tooth Development and Degenera-
tion in Fetuses of Minke Whale, Balaenoptera acutorostrata,” Journal of Veteri-
nary Medical Science 61 (1999): 227–32.
The Walking Whales Page 36