Human Action: A Treatise on Economics

Home > Other > Human Action: A Treatise on Economics > Page 18
Human Action: A Treatise on Economics Page 18

by Ludwig VonMises


  As the future is uncertain it always remains undecided and vague how much of it we can consider as now and present. If a man had said in 1913: At present—now—in Europe freedom of thought is undisputed, he would have not foreseen that this present would very soon be a past.

  3. The Economization of Time

  Man is subject to the passing of time. He comes into existence, grows, becomes old, and passes away. His time is scarce. He must economize it as he does other scarce factors.

  The economization of time has a peculiar character because of the uniqueness and irreversibility of the temporal order. The importance of these facts manifests itself in every part of the theory of action.

  Only one fact must be stressed at this point. The economization of time is independent of the economization of economic goods and services. Even in the land of Cockaigne man would be forced to economize time, provided he were not immortal and not endowed with eternal youth and indestructible health and vigor. Although all his appetites could be satisfied immediately without any expenditure of labor, he would have to arrange his time schedule, as there are states of satisfaction which are incompatible and cannot be consummated at the same time. For this man, too, time would be scarce and subject to the aspect of sooner and later.

  4. The Temporal Relation Between Actions

  Two actions of an individual are never synchronous; their temporal relation is that of sooner and later. Actions of various individuals can be considered as synchronous only in the light of the physical methods for the measurement of time. Synchronism is a praxeological notion only with regard to the concerted efforts of various acting men.5

  A man’s individual actions succeed one another. They can never be effected at the same instant; they can only follow one another in more or less rapid succession. There are actions which serve several purposes at one blow. It would be misleading to refer to them as a coincidence of various actions.

  People have often failed to recognize the meaning of the term “scale of value” and have disregarded the obstacles preventing the assumption of synchronism in the various actions of an individual. They have interpreted a man’s various acts as the outcome of a scale of value, independent of these acts and preceding them, and of a previously devised plan whose realization they aim at. The scale of value and the plan to which duration and immutability for a certain period of time were attributed, were hypostasized into the cause and motive of the various individual actions. Synchronism which could not be asserted with regard to various acts was then easily discovered in the scale of value and in the plan. But this overlooks the fact that the scale of value is nothing but a constructed tool of thought. The scale of value manifests itself only in real acting; it can be discerned only from the observation of real acting. It is therefore impermissible to contrast it with real acting and to use it as a yardstick for the appraisal of real actions.

  It is no less impermissible to differentiate between rational and allegedly irrational acting on the basis of a comparison of real acting with earlier drafts and plans for future actions. It may be very interesting that yesterday goals were set for today’s acting other than those really aimed at today. But yesterday’s plans do not provide us with any more objective and nonarbitrary standard for the appraisal of today’s real acting than any other ideas and norms.

  The attempt has been made to attain the notion of a nonrational action by this reasoning: If a is preferred to b and b to c, logically a should be preferred to c. But if actually c is preferred to a, we are faced with a mode of acting to which we cannot ascribe consistency and rationality.6 This reasoning disregards the fact that two acts of an individual can never be synchronous. If in one action a is preferred to b and in another action b to c, it is, however short the interval between the two actions may be, not permissible to construct a uniform scale of value in which a precedes b and b precedes c. Nor is it permissible to consider a later third action as coincident with the two previous actions. All that the example proves is that value judgments are not immutable and that therefore a scale of value, which is abstracted from various, necessarily nonsynchronous actions of an individual, may be self-contradictory.7

  One must not confuse the logical concept of consistency (viz., absence of contradiction) and the praxeological concept of consistency (viz., constancy or clinging to the same principles). Logical consistency has its place only in thinking, constancy has its place only in acting.

  Constancy and rationality are entirely different notions. If one’s valuations have changed, unremitting faithfulness to the once espoused principles of action merely for the sake of constancy would not be rational but simply stubborn. Only in one respect can acting be constant: in preferring the more valuable to the less valuable. If the valuations change, acting must change also. Faithfulness, under changed conditions, to an old plan would be nonsensical. A logical system must be consistent and free of contradictions because it implies the coexistence of all its parts and theorems. In acting, which is necessarily in the temporal order, there cannot be any question of such consistency. Acting must be suited to purpose, and purposefulness requires adjustment to changing conditions.

  Presence of mind is considered a virtue in acting man. A man has presence of mind if he has the ability to think and to adjust his acting so quickly that the interval between the emergence of new conditions and the adaptation of his actions to them becomes as short as possible. If constancy is viewed as faithfulness to a plan once designed without regard to changes in conditions, then presence of mind and quick reaction are the very opposite of constancy.

  When the speculator goes to the stock exchange, he may sketch a definite plan for his operations. Whether or not he clings to this plan, his actions are rational also in the sense which those eager to distinguish rational acting from irrational attribute to the term “rational.” This speculator in the course of the day may embark upon transactions which an observer, not taking into account the changes occurring in market conditions, will not be able to interpret as the outcome of constant behavior. But the speculator is firm in his intention to make profits and to avoid losses. Accordingly he must adjust his conduct to the change in market conditions and in his own judgment concerning the future development of prices.8

  However one twists things, one will never succeed in formulating the notion of “irrational” action whose “irrationality” is not founded upon an arbitrary judgment of value. Let us suppose that somebody has chosen to act inconstantly for no other purpose than for the sake of refuting the praxeological assertion that there is no irrational action. What happens here is that a man aims at a peculiar goal, viz., the refutation of a praxeological theorem, and that he accordingly acts differently from what he would have done otherwise. He has chosen an unsuitable means for the refutation of praxeology, that is all.

  _______________________________

  1. In a treatise on economics there is no need to enter into a discussion of the endeavors to construct mechanics as an axiomatic system in which the concept of function is substituted for that of cause and effect. It will be shown later that axiomatic mechanics cannot serve as a model for the treatment of the economic system. Cf. below, pp. 351–354.

  2. Henri Bergson, Matière et mémoire (7th ed. Paris, 1911), p. 205.

  3. Edmund Husserl, “Vorlesungen zur Phänomenologie des inneren Zeitbewusstseins,” Jahrbuch für Philosophie und Phänomenologische Forschung, IX (1928), 391 ff.; A. Schütz, loc. cit., pp. 45 ff.

  4. “Ce que j’appelle mon présent, c’est mon attitude vis-à-vis de l’avenir immédiat, c’est mon action imminente.” Bergson, op. cit., p. 152.

  5. In order to avoid any possible misunderstanding it may be expedient to emphasize that this theorem has nothing at all to do with Einstein’s theorem concerning the temporal relation of spatially distant events.

  6. Cf. Felix Kaufmann, “On the Subject-Matter of Economic Science,” Economica, XIII, 390.

  7. Cf. Ph. Wicksteed, The Commonsense of Political E
conomy, ed. Robbins (London, 1933), I, 32 ff.; L. Robbins, An Essay on the Nature and Significance of Economic Science (2d ed. London, 1935), pp. 91 ff.

  8. Plans too, of course, may be self-contradictory. Sometimes their contradictions may be the effect of mistaken judgment. But sometimes such contradictions may be intentional and serve a definite purpose. If, for instance, a publicized program of a government or a political party promises high prices to the producers and at the same time low prices to the consumers, the purpose of such an espousal of incompatible goals may be demagogic. Then the program, the publicized plan, is self-contradictory; but the plan of its authors who wanted to attain a definite end through the endorsement of incompatible aims and their public announcement, is free of any contradiction.

  VI. UNCERTAINTY

  1. Uncertainty and Acting

  THE uncertainty of the future is already implied in the very notion of action. That man acts and that the future is uncertain are by no means two independent matters. They are only two different modes of establishing one thing.

  We may assume that the outcome of all events and changes is uniquely determined by eternal unchangeable laws governing becoming and development in the whole universe. We may consider the necessary connection and interdependence of all phenomena, i.e., their causal concatenation, as the fundamental and ultimate fact. We may entirely discard the notion of undetermined chance. But however that may be, or appear to the mind of a perfect intelligence, the fact remains that to acting man the future is hidden. If man knew the future, he would not have to choose and would not act. He would be like an automaton, reacting to stimuli without any will of his own.

  Some philosophers are prepared to explode the notion of man’s will as an illusion and self-deception because man must unwittingly behave according to the inevitable laws of causality. They may be right or wrong from the point of view of the prime mover or the cause of itself. However, from the human point of view action is the ultimate thing. We do not assert that man is “free” in choosing and acting. We merely establish the fact that he chooses and acts and that we are at a loss to use the methods of the natural sciences for answering the question why he acts this way and not otherwise.

  Natural science does not render the future predictable. It makes it possible to foretell the results to be obtained by definite actions. But it leaves impredictable two spheres: that of insufficiently known natural phenomena and that of human acts of choice. Our ignorance with regard to these two spheres taints all human actions with uncertainty. Apodictic certainty is only within the orbit of the deductive system of aprioristic theory. The most that can be attained with regard to reality is probability.

  It is not the task of praxeology to investigate whether or not it is permissible to consider as certain some of the theorems of the empirical natural sciences. This problem is without practical importance for praxeological considerations. At any rate, the theorems of physics and chemistry have such a high degree of probability that we are entitled to call them certain for all practical purposes. We can practically forecast the working of a machine constructed according to the rules of scientific technology. But the construction of a machine is only a part in a broader program that aims at supplying the consumers with the machine’s products. Whether this was or was not the most appropriate plan depends on the development of future conditions which at the time of the plan’s execution cannot be forecast with certainty. Thus the degree of certainty with regard to the technological outcome of the machine’s construction, whatever it may be, does not remove the uncertainty inherent in the whole action. Future needs and valuations, the reaction of men to changes in conditions, future scientific and technological knowledge, future ideologies and policies can never be foretold with more than a greater or smaller degree of probability. Every action refers to an unknown future. It is in this sense always a risky speculation.

  The problems of truth and certainty concern the general theory of human knowledge. The problem of probability, on the other hand, is a primary concern of praxeology.

  2. The Meaning of Probability

  The treatment of probability has been confused by the mathematicians. From the beginning there was an ambiguity in dealing with the calculus of probability. When the Chevalier de Méré consulted Pascal on the problems involved in the games of dice, the great mathematician should have frankly told his friend the truth, namely, that mathematics cannot be of any use to the gambler in a game of pure chance. Instead he wrapped his answer in the symbolic language of mathematics. What could easily be explained in a few sentences of mundane speech was expressed in a terminology which is unfamiliar to the immense majority and therefore regarded with reverential awe. People suspected that the puzzling formulas contain some important revelations, hidden to the uninitiated; they got the impression that a scientific method of gambling exists and that the esoteric teachings of mathematics provide a key for winning. The heavenly mystic Pascal unintentionally became the patron saint of gambling. The textbooks of the calculus of probability gratuitously propagandize for the gambling casinos precisely because they are sealed books to the layman.

  No less havoc was spread by the equivocations of the calculus of probability in the field of scientific research. The history of every branch of knowledge records instances of the misapplication of the calculus of probability which, as John Stuart Mill observed, made it “the real opprobrium of mathematics.”1 Some of the worst errors have arisen in our day in the interpretation of the methods of physics.

  The problem of probable inference is much bigger than those problems which constitute the field of the calculus of probability. Only preoccupation with the mathematical treatment could result in the prejudice that probability always means frequency.

  A further error confused the problem of probability with the problem of inductive reasoning as applied by the natural sciences. The attempt to substitute a universal theory of probability for the category of causality characterizes an abortive mode of philosophizing, very fashionable only a few years ago.

  A statement is probable if our knowledge concerning its content is deficient. We do not know everything which would be required for a definite decision between true and not true. But, on the other hand, we do know something about it; we are in a position to say more than simply non liquet or ignoramus.

  There are two entirely different instances of probability; we may call them class probability (or frequency probability) and case probability (or the specific understanding of the sciences of human action). The field for the application of the former is the field of the natural sciences, entirely ruled by causality; the field for the application of the latter is the field of the sciences of human action, entirely ruled by teleology.

  3. Class Probability

  Class probability means: We know or assume to know, with regard to the problem concerned, everything about the behavior of a whole class of events or phenomena; but about the actual singular events or phenomena we know nothing but that they are elements of this class.

  We know, for instance, that there are ninety tickets in a lottery and that five of them will be drawn. Thus we know all about the behavior of the whole class of tickets. But with regard to the singular tickets we do not know anything but that they are elements of this class of tickets.

  We have a complete table of mortality for a definite period of the past in a definite area. If we assume that with regard to mortality no changes will occur, we may say that we know everything about the mortality of the whole population in question. But with regard to the life expectancy of the individuals we do not know anything but that they are members of this class of people.

  For this defective knowledge the calculus of probability provides a presentation in symbols of the mathematical terminology. It neither expands nor deepens nor complements our knowledge. It translates it into mathematical language. Its calculations repeat in algebraic formulas what we knew beforehand. They do not lead to results that would tell us anything about the actual sing
ular events. And, of course, they do not add anything to our knowledge concerning the behavior of the whole class, as this knowledge was already perfect— or was considered perfect—at the very outset of our consideration of the matter.

  It is a serious mistake to believe that the calculus of probability provides the gambler with any information which could remove or lessen the risk of gambling. It is, contrary to popular fallacies, quite useless for the gambler, as is any other mode of logical or mathematical reasoning. It is the characteristic mark of gambling that it deals with the unknown, with pure chance. The gambler’s hopes for success are not based on substantial considerations. The nonsuperstitious gambler thinks: “There is a slight chance [or, in other words: ‘it is not impossible’] that I may win; I am ready to put up the stake required. I know very well that in putting it up I am behaving like a fool. But the biggest fools have the most luck. Anyway!”

  Cool reasoning must show the gambler that he does not improve his chances by buying two tickets instead of one of a lottery in which the total amount of the winnings is smaller than the proceeds from the sale of all tickets. If he were to buy all the tickets, he would certainly lose a part of his outlay. Yet every lottery customer is firmly convinced that it is better to buy more tickets than less. The habitués of the casinos and slot machines never stop. They do not give a thought to the fact that, because the ruling odds favor the banker over the player, the outcome will the more certainly result in a loss for them the longer they continue to play. The lure of gambling consists precisely in its unpredictability and its adventurous vicissitudes.

  Let us assume that ten tickets, each bearing the name of a different man, are put into a box. One ticket will be drawn, and the man whose name it bears will be liable to pay 100 dollars. Then an insurer can promise to the loser full indemnification if he is in a position to insure each of the ten for a premium of ten dollars. He will collect 100 dollars and will have to pay the same amount to one of the ten. But if he were to insure one only of them at a rate fixed by the calculus, he would embark not upon an insurance business, but upon gambling. He would substitute himself for the insured. He would collect ten dollars and would get the chance either of keeping it or of losing that ten dollars and ninety dollars more.

 

‹ Prev