Unlocking the Sky

Home > Other > Unlocking the Sky > Page 4
Unlocking the Sky Page 4

by Seth Shulman

Even with Manly’s help, though, Walter Johnson—who worked closely with Kleckler on the project—recalls, they could never keep the motor hitting on all five cylinders. The team gave the engine a hotter spark, using the more up-to-date magneto ignition instead of the previous dry-cell batteries, but for all their efforts, they could only get the motor to develop two-thirds to three-quarters of the horsepower it had originally demonstrated. A decade of rust after its immersion in the Potomac had simply taken too big a toll for it to be brought back to its original condition.

  The team members know that the lack of horsepower will greatly jeopardize the plane’s chances of getting aloft. But they are determined to fly the aerodrome with Langley’s original engine. Ultimately, only the engine’s carburetor will be changed, and that only because Kleckler can’t understand the workings of the original mechanism well enough to try to restore it. But even the worries about the sufficiency of the motor’s now-diminished power don’t change the high esteem Kleckler and his team hold for Manly’s superb piece of engineering.

  The farsightedness of Manly’s engine design is all the more remarkable because so much else had changed since he first built it. While the aerodrome was collecting dust in storage at the Smithsonian Institution, a full-blown technological renaissance had transformed the world. In fact, in the course of human history it would be hard to find a more eventful decade of dramatic technological change than the one Langley’s aerodrome had quietly missed while boxed up in that back room.

  The first decade of the twentieth century saw the advent or ascension of a host of revolutionary technologies, including the telephone, electric lighting, and power transmission, the automobile, the radio, the phonograph, and motion pictures. People were staggered by the changes and the world had never seemed so full of possibilities or so unsettled by them. Inventors like Edison, Dow, Deere, Westinghouse, and many others laid the foundation for a new corporate America, which, in that fateful first decade of the twentieth century, quietly began to surpass all other nations in the production of most tangible commodities from coal and chemicals to steel and heavy machinery.

  Technology’s latest offerings were cropping up everywhere. Henry Ford’s Model T, introduced in 1908, had begun literally to make over the landscape at home while, by 1914, the opening of the Panama Canal reshaped it on an unimaginably vast continental scale. It seemed as though there was almost nothing that technology couldn’t accomplish. And the field of aviation was as good an example as you could find.

  Perhaps nothing illustrated the pace of change better than this single fact: One September day in 1913, just months before the aerodrome’s arrival, a pilot named Lincoln Beachey strode into the Hammondsport plant and asked Curtiss to build him an airplane that could “loop the loop.” Beachey, indisputably the greatest and most fearless stunt aviator of the day, wanted an engine “more than twice as strong as any of the standard makes,” whose gas flow wouldn’t be cut off by flying upside down. As part of the package, he specified that the plane be built with a special harness that would fasten him in for the stunt. The ever-prudent Curtiss was reluctant, viewing the idea as brazen and needlessly risky. But Beachey, the equivalent of a modern-day rock star or Hollywood celebrity who drew huge and enthusiastic crowds to all his venues, was a hard man to decline.

  By Thanksgiving, in a special plane Curtiss built for him, Beachey was astounding huge crowds as the world’s first pilot to fly multiple loops in the air.*

  All of which might well lead one to wonder, if Curtiss could so handily build a plane that could loop the loop, why would he ever be so keen to try to rebuild Langley’s ancient and outmoded aerodrome?

  The answer, at least on one level, is that, by 1914, the youthful aviation industry was undergoing an identity crisis. The strange, unresolved saga of the aerodrome had left a persistent and nagging question about how the history of the airplane should be told. And with some of the field’s doyens reaching the end of their lives, the question was one of more than idle import. Almost from the time of the aerodrome’s crash, for instance, Alexander Graham Bell had called for resurrecting the aerodrome. Octave Chanute, another of Langley’s contemporaries and one of the earliest aviation researchers in the country declared in 1909, for example: “There is no doubt that if the [Langley] machine had been properly launched it would have flown. The machine is still in existence,” he noted, calling it “most unfortunate that further effort had never been made” to test it.

  Meanwhile, the seed for Curtiss’s involvement in the project was planted in 1913 when the Smithsonian Institution awarded him the Langley Medal, the nation’s highest aviation award. The award had been inaugurated in 1908, several years after Langley’s death, and presented to the Wright brothers for their successful pioneering flights at Kitty Hawk. Since then, no achievement in aviation had been deemed worthy of the honor until the board voted to recognize Curtiss for his recent invention of the hydro-aeroplane, now known as the seaplane.

  On May 6, 1913, at the ceremony for the presentation of the Langley Medal, Alexander Graham Bell made the lengthy tribute to Curtiss before a Washington, D.C., audience, which included a diehard contingent of aviation buffs dedicated to Langley’s memory. Among the old gang of Langley supporters were Charles Walcott, who succeeded Langley as secretary of the Smithsonian; General James Allen, president of the Aero Club of Washington; Samuel B. McCormick, chancellor of the University of Pittsburgh, where Langley had held a chair in astronomy before coming to Washington; and Langley’s close former assistant Dr. John A. Brashear, who was given the honor of unveiling a tablet dedicated to Langley at the event.

  “I simply wish to express my feelings of gratitude and pleasure,” the always shy Curtiss remarked upon accepting the medal—a medallion fashioned from a pound of solid gold. Even at this stage in his career, Curtiss was uncomfortable making speeches. But he had quickly picked up on the tenor of the evening, adding, “As I look at the Langley models here, it becomes more evident to me than ever before—the merit of these machines and the great work which Mr. Langley did.” Ending his remarks to a flood of applause Curtiss noted, “I cannot say too much in favor and in memory of Professor Langley.”

  There is no evidence that the idea to rebuild Langley’s plane was formally hatched at this event, but there is little doubt that the notion crossed many minds before the evening was over. Like the rest of the audience, Curtiss was doubtless moved by Brashear’s almost maudlin lament about the last half hour he spent in Langley’s office. Brashear recalled that Langley had shown him a small piece that had broken off from the aerodrome’s launching mechanism that he believed had foiled the fateful attempt. “With a sad heart he turned to me and with trembling voice said, ‘Mr. Brashear, this has wrecked my hopes forever. My life work is a failure.’ I did all in my power to cheer and comfort him, but it was too late.

  “Soon after that,” Brashear continued, “he passed away, and I have often—aye many, many times—thought of that last sad half-hour spent with him. He was a noble man, and his works, though suddenly cut off by death, will live as long as this old world shall have dwellers upon it.”

  If remarks like Brashear’s brought Langley’s sad tale back to the attention of many in the field of aviation, the opportunity to restore the aerodrome was greatly enhanced by the Smithsonian’s recent establishment of a new department called the Langley Aerodynamical Research Laboratory. Headed by Dr. Albert F. Zahm, a noted aeronautical scholar of the period, the new lab was designed to spearhead American theoretical flight research.

  Whereas Langley’s many supporters viewed a restoration of the aerodrome as a means to reclaim his reputation for posterity, Zahm hoped the aircraft might also help to establish the standing of his fledgling laboratory. In particular, the past several years had seen an alarming number of fatalities. At least eight aviators had been killed in highly publicized crashes in 1913 alone. Zahm had noted that most of the crashes occurred when the planes lost fore and aft stability, leading to a sudden, unco
ntrolled dive. He believed that his new lab could help the aviation industry by reviewing the tandem principle adopted by Langley to see whether Langley’s design might “lessen, if not entirely prevent a fatal dive.”

  In interviews in Hammondsport after Zahm’s arrival, Curtiss explains his undoubtedly heartfelt admiration for Langley. And he echoes Zahm’s hope that experimenting with Langley’s tandem-wing design might, as he put it, “affect the form and structure of aeroplanes” in the future. But Curtiss has another reason to try to resurrect the old aerodrome—a reason so urgent and explosive that it will, as his friend and colleague Lyman Seely puts it, ultimately help spawn “the most persistent and the most misleading propaganda ever attending a scientific test.”

  TWO

  WRIGHTS AND WRONGS

  In Hammondsport, the old-timers used to say that if you jumped up in the air and flapped your arms you’d be infringing on the Wrights’ patent.

  —TONY DOHERTY, SON OF CURTISS’S ASSISTANT ELLWOOD “GINK” DOHERTY

  By the time the aerodrome arrives in Hammondsport in the spring of 1914, Glenn Curtiss faces an extraordinary situation. He has won almost unanimous admiration from practitioners in aviation around the world. His airplanes have broken distance, speed, and altitude records. But in January, the U.S. Court of Appeals has just handed down a permanent injunction that prohibits Curtiss from manufacturing or even exhibiting his aircraft in the United States without a license from Orville Wright. And, despite Curtiss’s repeated attempts to negotiate, Wright has announced that he will consider lenient royalty arrangements with anyone in the field except Curtiss.

  In a startlingly broad interpretation of the Wright brothers’ patent, the courts have sanctioned their exclusive claim to the sole practical means of stabilizing an aircraft in flight. As the Wrights had hoped, their sweeping patent has become, in effect, a patent on the airplane. And especially since the death of his brother Wilbur in 1912, Orville Wright is in no mood to compromise: he unwaveringly demands 20 percent of the revenue generated by any competitors’ airplanes whether through their sale or exhibition.

  As a result, unless Curtiss decides to move his company to another country that does not recognize the Wright patent claims, he will be forced to either cease his operations or pay such a crippling mountain of back royalties on the planes he has already sold or flown that he will surely be bankrupted.

  There is also no question that the feud has become personal. In a front-page interview in the New York Times in February 1914, Orville accuses Curtiss of stealing the Wrights’ designs and even blames him for Wilbur Wright’s death from typhoid fever. According to Orville, Wilbur’s agitation over the case “worried him to his death…first into a state of chronic nervousness, and then into a physical fatigue which made him an easy prey for the attack of typhoid which caused his death.”

  Calling Orville’s claims “absurd, if not malicious,” Curtiss publicly retorts that he never “had an item of information” from the Wright brothers that helped him build his airplanes. As for the contention about Wilbur’s death, Curtiss describes it as a bunch of “insinuations easily interpreted as such untruths as I cannot believe Mr. Wright, or any other sane man, ever made.”

  Curtiss has repeatedly appealed to the Wrights for a settlement. With no success in negotiations and no satisfaction in court, he has few remaining options. In a move born of desperation, Curtiss embarks on the aerodrome restoration as an ambitious effort to set the record straight.

  The Smithsonian’s involvement in restoring Langley’s aerodrome lends an aura of objectivity but, in 1914, the question of Langley’s contribution to aviation is of more than academic interest to Curtiss. He knows that if Langley’s plane flies, it could raise profound doubts about the Wrights’ claim to being the first with a “useful” aeronautical invention.

  In fact, Curtiss is quite candid about his motives. As he writes to Lincoln Beachey, another target of the Wrights’ patent claims, the aerodrome restoration “would go a long way toward showing that the Wrights did not invent the flying machine as a whole but only a balancing device.” If they are successful in getting the aerodrome to fly, he says, perhaps in court “we would get a better decision next time.”

  Today, nearly a century into the age of aviation, the Wright brothers have become a part of our collective mythology—lone inventors who single-handedly turned a fantastic dream into a practical reality. Of course, the myth captures a truly monumental achievement. But it also willfully ignores half of the Wright brothers’ story, obscuring the role the Wrights played once their invention took flight.

  Now largely forgotten, the Wrights made no secret of the fact that they sought a monopoly on production of the airplane comparable to the one Alexander Graham Bell had won for the telephone. After all, monopoly was the hallmark of the Wright brothers’ era—the Gilded Age—with vast, vertically integrated empires of oil and steel built by titans like Rockefeller and Carnegie. Securing monopoly control of the commercial airplane was the linchpin of the Wrights’ business strategy. It helped them to attract a bevy of heavyweight backers that came to be known in many circles as the Wall Street Air Trust, including powerful financiers like Robert Collier, August Belmont, and Cornelius Vanderbilt.

  With the help of Vanderbilt and the others, the Wright brothers came close to achieving monopoly control over airplane production in the United States through broad patents and aggressive business tactics. But unlike Bell’s phone lines, which were conducive to a centralized monopoly, the chaotic, creative drive to conquer the sky in the first decade of the twentieth century would prove exceedingly difficult for the Wrights to contain. And the biggest obstacle they faced was their most formidable competitor: Glenn Curtiss.

  After the appeals court decision in 1914, Orville Wright boasted to the press that the Wright Company had secured “absolute control” of the emerging airplane industry. His remark was delivered with a shrewd eye toward his company’s investors but a remarkable blindness to its effect on the industry.

  The truth is, by this time, the Wrights’ handling of their proprietary rights over the course of nearly a decade had already alienated most of their colleagues in the young aviation field. Even Grover Loening, a loyal friend to the Wrights and onetime chief engineer of the Wright Company noted later that, by filing suit—and, in particular, by prosecuting their case so aggressively against Curtiss—the brothers “turned the hand of almost every man in aviation against them.”

  The Wrights’ legal case against Curtiss hinged on a particular technical issue. The Wright brothers had solved the difficult problem of stabilizing an aircraft by making the wings of their planes flexible. In their patented “wing warping” method, the Wrights twisted the airplane’s wings in a system wired to the plane’s rudder. When the Wrights steered their airplane, their wing-warping system twisted each wing slightly in the opposite direction to help the plane bank on turns without losing control. Although some of the most respected aviation pioneers claimed the underlying principle was well known for as many as fifty years before the Wrights, their wing-warping stabilizing device was nevertheless an important advance that helped the airplane achieve controlled flight.

  From the first plane Curtiss ever built, he and his team solved the stability problem in a related, but notably different way. Realizing that the function of the rudder and the need for lateral stability were separate, they designed flaps on the wings, so-called ailerons.* Like the Wrights’ technology, the ailerons on each wing tilt in opposite directions to stabilize the aircraft. Unlike the Wrights’ design, however, the ailerons operate separately from the plane’s fixed wings and from its rudder. Ailerons rapidly became the industry standard. With them, an airplane’s wings could be made rigid and much stronger, and they allowed the plane to remain stable independent of its steering mechanism.

  Curtiss and most other aviators of the day argued that the aileron was a significant and distinct advance that should not be legally covered by the Wrights’ cla
ims. In essence, though, the Wrights claimed that their completion of the first proven invention to solve the problem of lateral stability gave them rights to any subsequent design, including ailerons. The Wrights’ patent itself repeatedly spells out this contention: “We do not wish to be understood as limiting ourselves strictly to the precise details of construction hereinbefore described,” the Wrights’ lawyers write at virtually every point in which the patent spells out the particulars of the brothers’ wing-warping technique. “We do not limit ourselves to the particular description of rudder set forth…” it reads when they describe the rudder. And, importantly, when they describe the way the wings can be flexed, the patent states: “Our invention is not limited to this particular construction.”

  With such all-encompassing language passing muster at the U.S. Patent Office, the Wrights’ lawyers argued that it mattered not that wing warping was virtually obsolete within six years from the time the patent was issued. Nor was it relevant that even the Wright Company would quietly begin to abandon wing warping in favor of ailerons by as early as 1915. As their lawyers argued, the Wrights had been granted exclusive rights to all known means to laterally stabilize an airplane; now Orville Wright could legally exercise this exclusive proprietary claim however he wished.

  It is a detail lost to history exactly when Orville Wright first learned that Curtiss and the Smithsonian team intended to restore Langley’s aerodrome. Most likely, he read it in his morning newspaper as did other Americans early in the spring of 1914.

  We can imagine him at home with his older sister Katharine and his father, Bishop Milton Wright, in their new mansion on Hawthorne Hill, southeast of Dayton, Ohio, reading the news, his cheeks flushing with rage. Not one to easily voice his anger, Orville might well have risen from the breakfast table in a wordless fury to pace and fume outside on the grand porch above his stately, sloping lawn.

 

‹ Prev