by Jean Jouzel
17. Valérie Masson-Delmotte et al., “GRIP Deuterium Excess Reveals Rapid and Orbital Changes of Greenland Moisture Origin,” Science 309 (2005): 118–21.
18. Jorgen Peder Steffensen et al., “High-Resolution Greenland Ice Core Data Show Abrupt Climatic Change Happens in a Few Years,” Science 321 (2008): 684.
19. EPICA Community Members, “One-to-One Coupling of Glacial Climate Variability in Greenland and Antarctica,” Nature 444 (2006): 195–98.
20. Thomas Stocker and Sigfus Johnsen, “A Minimum Thermodynamic Model for the Bipolar Seesaw,” Paleoceanography 18 (2003): 1087.
Chapter 10
1. Uli von Grafenstein et al., “The Short Period 8,200 Years Ago Documented in Oxygen Isotope Records of Precipitation in Europe and Greenland,” Climate Dynamics 14 (1998): 73–81.
2. Édouard Bard et al., “Solar Irradiance during the Last Millennium Based on Cosmogenic Nucleides,” Tellus 52B (2000): 985–92.
3. Bill Ruddiman, “The Anthropogenic Greenhouse Era Began Thousands of Years Ago,” Climatic Change 61 (2003): 261–93.
Chapter 11
1. Charles D. Keeling, “Rewards and Penalties of Monitoring the Earth,” Annual Review of Energy and the Environment 23 (1998): 25–82.
2. IPCC, Climate Change 2007: The Physical Science Basis, Working Group I Contribution to the Fourth Assessment Report of the IPCC (Cambridge: Cambridge University Press, 2007).
3. http://www.globalcarbonproject.org/.
4. http://www.globalcarbonproject.org/carbonbudget/index.htm.
Chapter 12
1. Willi Dansgaard et al., “Climate Changes, Norsemen, and Modern Man,” Nature 255 (1975): 24–28.
2. John Mitchell, “The Greenhouse Effect and Climate Change,” Review of Geophysics 27 (1989): 115–39.
3. J. D. Houghton et al., eds., Climate Change 1995, The Science of Climate Change (Cambridge: Cambridge University Press. 1995).
4. Michael Mann et al., “Northern Hemisphere Temperatures during the Last Millennium: References, Uncertainties, and Limitations,” Geophysical Research Letters 26 (1999): 759–62.
5. IPCC, Climate Change 2001: The Scientific Basis, Third Assessment Report, summary for policymakers, 2001.
6. S. Solomon et al., eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press, 2007).
7. Ibid.
8. Claude Allègre (with Dominique de Montvalon), L’imposture climatique ou la fausse écologie (Paris: Plon, 2010).
9. Vincent Courtillot, Nouveau voyage au centre de la terre (Paris: Odile Jacob, 2009).
10. Sylvestre Huet, L’imposteur c’est lui: Réponse à Claude Allègre (Paris: Stock, 2010).
11. “Climate Change and the Integrity of Science,” Science 328 (2010): 689–90.
12. N. Caillon et al., “Timing of Atmospheric CO2 and Antarctic Temperature Changes across Termination-III,” Science 299 (2003): 1728–31.
13. Ibid.
14. Rune Graversen et al., “Vertical Structure of Recent Arctic Warming,” Nature 541 (2008): 53–56.
15. Éric Rignot and Pannir Kanagaratnam, “Changes in the Velocity Structure of the Greenland Ice Sheet,” Science 311 (2006): 986–90.
16. Göran Ekström et al., “Seasonality and Increasing Frequency of Greenland Glacial Earthquakes,” Science 311 (2006): 1756–58.
17. Eugene Domack et al., “Stability of the Larsen B Ice Shelf on the Antarctic Peninsula during the Holocene Epoch,” Nature 436 (2005): 681–85.
18. Éric Rignot et al., “Recent Antarctic Ice Mass Loss from Radar Interferometry and Regional Climate Modeling,” Nature Geoscience 1 (2008): 106–10.
Chapter 13
1. Richard Lindzen et al., “Does the Earth Have an Adaptive Iris?” Bulletin of the American Meteorological Society 82, no. 3 (2001): 417–32.
2. Stefan Rahmstorf et al., “A Semi-Empirical Approach to Projecting Sea-Level Rise,” Science 315 (2007): 368–70.
3. G. Helmar Gudmunsson, “Fortnightly Variations in the Flow Velocity of Rutford Ice Stream, West Antarctica,” Nature 444 (2006): 1063–64.
4. Didier Swingedouw et al., “Effects of Land-Ice Melting and Associated Changes in the AMOC Result in Little Overall Impact on CO2 Uptake,” Geophysical Research Letters 34 (2007): L23706.
5. Peter Schwartz and Doug Randall, An Abrupt Climate Change Scenario and Its Implications for United States National Security, 2003, http://www.gbn.com/consulting/article_details.php?id=53.
Chapter 14
1. M. L. Parry et al., eds., Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press, 2007).
2. IPCC, Third Assessment Report, synthesis report, 2001.
3. Collectif Argos, Les réfugiés climatiques, preface by Hubert Reeves and Jean Jouzel (Gollion: Infolio, 2007).
4. IMPACTS, Changements climatiques: Quels impacts pour la France, Greenpeace-Climpact, preface by Jean Jouzel and Hervé Le Treut, 2005, http://www.impactsclimatiquesenfrance.fr.
5. M. L. Parry et al., eds., Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press, 2007).
6. Céline Le Bohec et al., “King Penguin Population Threatened by Southern Ocean Warming,” Proceedings of the National Academy of Sciences 105 (2008): 2493–97.
Chapter 15
1. United Nations Framework Convention on Climate Change, FCCC/IN-FORMAL/84 GE.05-62220 (E) 200705, 1992, p. 5, http://unfccc.int/resource/docs/convkp/conveng.pdf.
2. http://www.globalcarbonproject.org/.
3. Bjorn Lomborg, L’Écologiste sceptique: Le véritable état de la planète, preface by Claude Allègre (Paris: Cherche-Midi, 2004).
4. Nicholas Stern, The Stern Review Report: The Economics of Climate Change (London: HM Treasure, 2006).
5. Stratégie nationale d’adaptation au changement climatique (Paris: Observatoire national sur les effets du réchauffement climatique, La Documentation française, 2007).
6. Pierre Radanne, La division par quatre des émissions de dioxyde de carbone in France d’ici 2050 (report made to the MIES in March 2004); report written under the presidency of Christian de Boissieu, Division par quatre des emissions de gaz à effet de serre de la France à horizon 2050 (Paris: La Documentation française, 2006).
7. www.legrenelleenvironnement.fr
8. The detail of these measures as well as all the information pertaining to the Grenelle de l’environnement are found at http://www.legrenelle-environnement.fr/.
Chapter 16
1. Igor Zotikov, The Antarctic Subglacial Lake Vostok (Springer-Praxis, 2006).
2. G. de Q. Robin, D. J. Drewry, and D. T. Meldrum, “International Studies of Ice Sheet and Bedrock,” Philosophical Transactions of the Royal Society of London 279 (1977): 185–96; A. Kapitsa, J. K. Ridley, G. de Q. Robin, M. J. Siegert, and I. Zotikov, “Large Deep Freshwater Lake beneath the Ice of Central East Antarctica,” Nature 381 (1996): 684–86.
3. John Priscu et al., “Cosmicrobiology of Subglacial Ice above Lake Vostok, Antarctica,” Science 286 (1999): 2141–44.
4. David Karl et al., “Microorganisms in the Accreted Ice of Lake Vostok, Antarctica,” Science 286 (1999): 2144–47.
5. Sergy Bulat et al., “DNA Signature of Thermophilic Bacteria from the Aged Accretion Ice of Lake Vostok, Antarctica: Implications for Searching for Life in Extreme Icy Environments,” International Journal of Astrobiology 3 (2004): 1–12.
Chapter 17
1. M. Murozumi et al., “Chemical Concentration of Pollutant Lead Aerosols, Terrestrial Dusts and Seasalts in Greenland and Antarctic Snow Strata,” Geochemica et cosmochemica acta 33 (1969): 1247–48.
2. Claude Boutron et al., “L’archivage des activités humaines par les neiges et glaces polaires: Le cas du plomb,” Comptes Rendus Geoscience 336 (2004): 847–67.
3. Je
an-Pierre Candelone et al., “Post-industrial Revolution Changes in Large Scale Atmospheric Pollution of the Northern-Hemisphere by Heavy Metals as Documented in Central Greenland Snow and Ice,” Journal of Geophysical Research 100 (1995): 16605–16.
4. Sungming Hong et al., “History of Ancient Copper Smelting Pollution during Roman and Medieval Times Recorded in Greenland Ice,” Science 272 (1996): 246–49.
5. Hubertus Fischer et al., “Sulphate and Nitrate Firn Concentrations on the Greenland Ice Sheet 2, Temporal Anthropogenic Deposition Changes,” Journal of Geophysical Research 103 (1998): 21935–42.
6. Michel Pourchet et al., “Some Meteorological Applications of Radioactive Fallout Measurements in Antarctic Snows,” Journal of Geophysical Research 88 (1983): 6013–20.
7. Jean Jouzel et al., “A Continuous Record of Artificial Tritium Fallout at the South Pole (1954–1978),” Earth and Planetary Science Letters 45 (1979): 188–200.
8. Joseph Farman et al., “Large Losses of Total Ozone in Antarctica Reveal Seasonal CLOx/NOx Interaction,” Nature 315 (1985): 207–10.
9. Paul Crutzen, “Geology of Mankind,” Nature 415 (2002): 23.
Conclusion
1. Paul Crutzen, “Geology of Mankind,” Nature 415 (2002): 23.
2. Private communication to the author (CL) at the French Academy of Sciences.
3. UN, Global Environment Outlook: Environment for Development (GEO-4) (2007).
SELECTED BIBLIOGRAPHY
Alley, Richard. The Two-Mile Time Machine: Ice Cores, Abrupt Climate Change, and Our Future (Princeton: Princeton University Press, 2002).
Collectif Argos. Les réfugiés climatiques. Gollion: Infolio, 2007.
Bard, Édouard, ed. L’Homme face au climat. Paris: Odile Jacob, 2006.
Berger, André. Le climat de la Terre: Un passé pour quel avenir? Brussels: De Boeck University, 1992.
Dansgaard, Willi. Frozen Annals: Greenland Ice Sheet Research. Odder, Denmark: Narayana Press, 2005.
Fellous, Jean-Louis, and Catherine Gautier, eds. Comprendre le changement climatique. Paris: Odile Jacob, 2007.
Imbert, Bertrand, and Claude Lorius. Le Grand Défi des poles. Paris: Gallimard, 2006.
IPCC. Climate Change 2007: Fourth Assessment Report. Cambridge: Cambridge University Press, 2007. Complete IPCC reports available in English only (Groups I, II, and III and synthesis report) on the IPCC site: http://www.ipcc.ch.
Joussaume, Sylvie. Climat d’hier à demain. Paris: CNRS Editions/CEA, 2000.
Le Treut, Hervé, and Jean-Marc Jancovici. L’Effet de serre: Allons-nous changer le climat? Paris: Flammarion, “Champs,” 2004.
Lorius, Claude. Glaces de l’Antarctique: Une mémoire, des passions. Paris: Odile Jacob, 1991.
Metz, B., O. R. Davidson, P. R. Bosch, R. Dave, and L. A. Meyer, eds. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
Pachauri, R. K., and A. Reisinger, eds. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2007.
Parry, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, eds. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
Schneider, Stephen. “Science as a Contact Sport: Inside the Battle to Save the Earth’s Climate,” National Geographic Society (2009).
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
Weart, Spencer. The Discovery of Global Warming. http://www.aip.org/history.
Internet Sites
Institut Pierre-Simon-Laplace—http://www.ipsl.jussieu.fr
Intergovernmental Panel on Climate Change (IPCC)—http://www.ipcc.ch
Jean-Marc Jancovici—http://www.manicore.com
Laboratoire de Glaciology et Géophysique de l’Environnement (LGGE)—http://www-lgge.obs.ujf-grenoble.fr
Laboratoire des Sciences du Climat et de l’Environnement (LSCE)—http://www.lsce.ipsl.fr
Météo France—http://www.meteo.fr
Mission Interministérielle sur l’Effet de Serre (MIES)—http://www.effet-de-serre.gouv.fr
Organisation Météorologique Mondiale—http://www.wmo.int
INDEX
ablation, 20, 21–22, 29–30, 35, 69, 206
Adélie Land, 31, 34, 86, 98, 99, 250
Adhémar, Joseph Alphonse, 39, 49
aerosols, 72, 73, 115, 139, 170, 180–81, 183, 204, 262, 271; content of atmospheric aerosols, 116; effects of on clouds, 181; origins of, 181; radiative forcing of, 181; sulfur aerosols, 151
Africa, 44, 147, 149, 190, 222
Agassiz, Louis, 19, 37, 38
air bubbles, in the ice of Antarctica, 73–77, 103–4, 134, 143, 271; extraction of the bubbles from ice, 89–90; oxygen 18 found in, 119; relationship of nitrogen to oxygen in, 80, 126
air content, 75, 83, 116, 126, 191, 193. See also air bubbles, in the ice of Antarctica
Alaska, 9, 45
albedo, 7–8, 14, 118, 161, 176, 181, 196, 206–7
Aletsch glacier, 6
Alexander I, 31
alkenones, 62
Allègre, Claude, 189, 191
Allerod period, 130
Alps, the, 20, 49, 106, 187; effects of global warming on, 222–23; French Alps, 21, 207–8; Swiss Alps, 22–23
American Academy of Sciences, 191
American Geophysical Union, 153
Amery Ice Sheet, 13, 35
ammonium, 135
Amsterdam Island, 165
Amundsen, Roald, 24
Amundsen Sea, 26
Andes, 6, 23, 78, 223; glaciers of, 105–6
Angelis, Martine de, 90
Antarctic, 32
Antarctic Peninsula, 12, 13, 34–35, 55, 109, 199
Antarctic Treaty (1959), 85, 249
Antarctica, 7, 8, 10, 18, 38, 44, 68, 71, 72, 73, 85, 107, 114, 122, 141, 147, 212, 252, 253, 273; Australian research in, 104; chronology of ice in, 79; climate of, 123–24, 128–29; contribution of to the rise in sea levels, 212, 213; cooling of, 45; deep core drilling in central Antarctica, 105; drilling in by the Japanese, 103; exploration of by the French, 86–88; glaciation of, 45; ice sheets of, 5, 12–13, 247, 261; initial exploration of, 31–32, 34; movement of ice in, 69; research conducted by Europeans in, 100; separation of from Australia, 45; sulfates in, 266–67; uncertain mass balance of, 34–36; unexplored areas of, 18; warming of, 198–200. See also Dôme C; East Antarctica; West Antarctica
Anthropocene period, 247, 272–75
Arctic, the, 18; acceleration of global warming in, 197–98, 222; atmospheric pollution in, 262, 266–67; and the ozone hole, 271; and the problem of “Arctic fog,” 266
Arctic Ocean, 8, 13, 225; exploration of, 23–25; ice cover of, 196; projected warming of, 209–10; vulnerable ice of, 25–27, 197–98
Argentina, 109
argon (Ar), 64, 65, 76, 143, 162, 175
Argos Collective, 225
Arolloa glacier, 208
Arrhenius, Svante, 39, 74–76, 89, 163, 164, 174
ash layers, 78
Asia, 216, 222. See also Southeast Asia
astronomical forcing, 115
Atlantic Ocean, 148, 149, 215, 225. See also North Atlantic
atmospheric circulation, 137, 140
atomic mass, 54
Augustin, Laurent, 108
Australia, 44, 45, 122, 220, 231, 232, 235; increase in CO2 emissions in, 233
Austria, 19, 22, 177
Baglety Ice Field (Alaska), 6
Bali Conference, 234–36, 238
Baltic Sea, 147
Bangladesh, 220
Bard, Édouard, 137
Ba
rnola, Jean-Marc, 79
Belgium, 97, 100
Bellingshausen, Faddey, 31
Bellingshausen Sea, 26, 35
Bender, Michael, 80, 119
benthics, 61
Bentley Subglacial Trench, 12–13
Berger, André, 49, 65
Bering Strait, 24, 25
Bermuda, 60
beryllium 10 (10 Be), 73, 78–79, 128, 152
biodiversity, 177, 218, 227, 238, 241, 243, 248, 251, 273
biomass, combustion of, 171
bison, 8–9
Bolivia, 23, 223
Bond, Gary, 143–44
Borchgrevink, Carstens, 32
Borloo, Jean-Louis, 243
Bossons Glacier, 19
Boutron, Claude, 263
Brazil, 147, 220; increase in CO2 emissions in, 233
British Antarctic Survey, 104
Broecker, Wally, 96, 131, 133, 134, 139, 143
bromide (Br), 71, 170
Bronze Age, 19
Bruckner, Edouard, 39, 49
Brunhes, Bernhard, 126
Brunhes-Matuyama magnetic field, 65, 126, 128
Bulat, Sergey, 257
Byrd, Richard, 32, 34
Byrd Station, 84–85, 89; ice drilling at, 92, 147
Caillon, Nicolas, 191
calcium (Ca), 61, 62, 135
calcium carbonate (CaCO3): formation of, 60, 146; and isotopic fractionation, 61
“calibrating” curve, 64
California, 151
Callendar, Guy, 164, 173
Camp Century, 83–84, 87, 88, 89, 91, 107, 109, 132, 173; ice drilling at, 92, 109, 130, 131
Canada, 9, 149, 225, 232, 235, 249; northern Canada, 25
Canadian Arctic, 6, 37
Canon of Insolation and the Ice Age Problem (Milankovitch), 49
Capron, Emilie, 119
carbon (C), 54, 71, 204, 228; the carbon cycle, 204. See also carbon, isotopes of
carbon, isotopes of: carbon 12, 54; carbon 13, 54, 56, 59, 76, 153, 165; carbon 14, 54, 77–78, 79, 85, 128, 152; carbon 14 dating, 131; transformation of carbon 14 into nitrogen, 64
Carbon Budget 2009, 168
carbon dioxide (CO2), 43, 122, 129, 133, 134, 153, 162, 175, 203, 204, 211, 262; absorption of by oceans and vegetation, 164–65, 168, 221; atmospheric CO2, 75, 173–74, 175–76; CO2 content of ice, 87; emissions of due to fossil fuels, 171–72; “heavy” CO2, 56; seasonal variations in, 164–65; variations in the concentration of, 114–15, 125, 152–54, 164–66, 168, 191, 193, 204–5, 254; and volcanic activity, 44. See also global warming