by Thomas Dixon
If this first approach to the conflict narrative is to change the plot, the second involves recasting the leading characters. This approach says: yes, there have been conflicts that seem to be between science and religion, and they are real conflicts, but they are not between science and religion. The question then is: who or what are the real antagonists in this story? In a way, we are then just straight back into the messy details of historical complexity. There is certainly not a simple recasting that works for all cases, but the general idea is that the real conflict is a political one about the production and dissemination of knowledge. The opposition of science versus religion is then seen to be standing proxy for some classic modern political conflicts: the individual versus the state, or secular liberalism versus conservative traditionalism. It is interesting to note that in modern America, for example, campaigners both for and against the teaching of evolution in schools have portrayed themselves as representing the rights and freedoms of the people against an intolerant and authoritarian establishment which is controlling the educational agenda. In the 1920s that establishment was portrayed by defenders of evolution as Christian and conservative, but to some religious groups today it seems that a secular liberal elite have taken control of the education system. Debates about science and religion give certain groups an opportunity to argue their case for greater social influence, and greater control over the mechanisms of state education, a case that rests on quite independent political grounds.
These questions about the politics of knowledge will arise repeatedly in subsequent chapters. For the moment, let us consider just one other example – the philosopher and firebrand Thomas Paine. An unsuccessful corset-maker, sacked tax-collector, and occasional political writer, Paine left his native England to start a new life in America in 1774. On his arrival in Philadelphia, he found work as the editor of the Pennsylvania Magazine. A couple of years later, his polemical pamphlet Common Sense (1776) was a key factor in persuading the American colonists to go to war against the British government, and established Paine as the bestselling author of the age. An associate of Benjamin Rush, Thomas Jefferson, and others of the founding fathers of the United States of America, Paine’s democratic and anti-monarchical political philosophy shaped the Declaration of Independence. After politics, Paine’s other great passions were science and engineering. He had attended popular lectures on Newton and astronomy back in England, and he spent many years of his life working on a design for a single-span iron bridge, inspired by the delicacy and strength of one of the great works of nature – the spider’s web. His whole philosophy was a scientific one. He saw revolutions in governments paralleling the revolutions of celestial bodies in the heavens. Each was an inevitable, natural, and law-governed process. Later in his life, having had a hand in both the American and French revolutions, he turned his sights from monarchy to Christianity. The institutions of Christianity were as offensive to his enlightened and Newtonian sensibilities as were those of monarchical government. In his Age of Reason (1794), Paine complained of ‘the continual persecution carried on by the Church, for several hundred years, against the sciences and against the professors of science’.
Paine’s version of the conflict narrative makes most sense when seen in its political context. Paine was, indeed, a scientific thinker who was opposed to Christianity. He denounced the Bible, especially the Old Testament, with its stories of ‘voluptuous debaucheries’ among the Israelites and the ‘unrelenting vindictiveness’ of their God. To the shock of his friends, Paine wrote of the Bible: ‘I sincerely detest it, as I detest everything that is cruel.’ Paine also lambasted the ‘priestcraft’ at work in the ‘adulterous’ relationship between the Church of England and the British state. What he hoped for, though, was not an end to religion but the replacement of Christian religion by a rational religion based on the study of nature – one which recognized the existence of God, the importance of morality, and the hope for a future life, but did away with scriptures, priests, and the authority of the state. His reasons for this were democratic ones. National churches lorded illegitimate power over the people by claiming special access to divine truths and revelations. But everyone can read the book of nature and understand the goodness, power, and generosity of its author. In the religion of Deism recommended by Paine, there was no need for the people to be in thrall either to priests or to the state. Science could help to replace Christianity by showing that every individual could find God by looking at the night sky rather than by reading the Bible or going to church. ‘That which is now called natural philosophy’, Paine wrote, ‘embracing the whole circle of science of which astronomy occupies the chief place, is the study of the works of God, and of the power and wisdom of God and his works, and is the true theology.’
Paine’s democratic ideals, including the separation of church and state, are enshrined in the founding documents of the United States. And in modern America too, it is competing political visions that come into conflict in debates about science and religion. American politicians who deny the truth of the theory of evolution and advocate the teaching of a religiously motivated concept of ‘Intelligent Design’ in schools do not do so for scientific reasons. They do so, rather, to send a signal – to indicate their general support for Christianity, their opposition to excessively secularist interpretations of the Constitution, and their hostility to naturalistic and materialistic world views.
A final interesting piece of support for the suggestion that what is really at stake in science–religion encounters is politics, is to be found in two mid-20th-century stage plays. Each dramatizes a famous clash between a heroic scientific individual and a reactionary and authoritarian religious establishment, and does so to make primarily political points. Bertolt Brecht’s Life of Galileo was composed during the 1930s and early 1940s. Brecht was a German communist, opposed to fascism, and living in exile in Denmark and subsequently the United States. The play uses the story of Galileo to investigate the dilemmas faced by a dissident intellectual living under a repressive regime, and also to suggest the importance of pursuing scientific knowledge for moral and social ends rather than purely for its own sake. Brecht saw in the well-known Galileo affair political lessons which could be applied to a world struggling against authoritarian fascism and, in the later version of the play, living in the shadow of the dropping of atomic bombs on Hiroshima and Nagasaki.
Jerome Lawrence and Robert E. Lee’s play Inherit the Wind, first performed in 1955, and made into a famous film in 1960, was a dramatization of the Scopes ‘monkey trial’ of 1925. The historical events on which the play was based are discussed in Chapter 5; they centre on the prosecution of a Tennessee school teacher, John Scopes, for teaching evolution in contravention of state law. Inherit the Wind used the Scopes case to attack the anti-communist purges of the McCarthy era. Scopes, the heroic evolutionist standing up against a repressive Christian establishment in 1920s Tennessee, stood for the struggle for freedom of opinion, association, and expression by communist sympathizers in the face of a repressive American government machine. Among those sympathizers, incidentally, was Bertolt Brecht, who had been called to testify before the House Committee on Un-American Activities in 1947. In the case both of Brecht’s Galileo and Lawrence and Lee’s Inherit the Wind, it was questions of intellectual freedom, political power, and human morality that gave the conflict between science and religion its drama and its interest. The same is true in real life.
‘Science and religion’ as an academic field
So far we have looked at science and religion in general terms as two cultural enterprises which encounter each other both in the mind of the individual and in the political domain. There is an important further dimension to add to this preliminary picture, which is the recent development of ‘science and religion’ as an academic field in its own right.
Of course theologians, philosophers, and scientists have been writing treatises about the relationship between natural knowledge and revelation for centuries.
Many of these works were very popular, especially in the 18th and 19th centuries. The most famous was Natural Theology (1802) by the Anglican clergyman William Paley, which argued from the complex adaptations of plants and animals to the existence of an intelligent designer. However, from the 1960s onwards ‘science and religion’ took on a more distinct existence as an academic discipline. In 1966 the first specialist journal in the field was founded in Chicago – Zygon: Journal of Religion and Science. The same year saw the publication of a very widely used textbook, Issues in Science and Religion by the British physicist and theologian Ian Barbour. Since that time, various organizations have been set up to foster this kind of work, including a European Society for the Study of Science and Theology, and an International Society for Science and Religion. There are established academic posts devoted specifically to the study of science and religion at several major institutions, including the universities of Oxford and Cambridge in the UK, and Princeton Theological Seminary in the US.
Academic work by scientists and theologians seeking to develop a harmonious interdisciplinary dialogue has been supported by a range of institutions, including the Roman Catholic Church, through the work of the Vatican Observatory, and also the John Templeton Foundation in America – a philanthropic organization particularly committed to supporting research that harmonizes science with religion. A recent large Templeton-funded project has been devoted to research on altruism and ‘unlimited love’, for example. One outcome of this has been a book explaining the improved physical health and mental well-being enjoyed by those who live an altruistic and compassionate life.
The John Templeton Foundation spends millions of dollars on research grants each year, including an annual Templeton Prize, currently valued at about $1.5 million, given to an individual for ‘Progress Toward Research or Discoveries about Spiritual Realities’. Former winners have included Christian evangelists, leading figures from non-Christian faiths, and also many individuals who have been prominent in the academic dialogue between science and religion, such as Ian Barbour, Arthur Peacocke, John Polkinghorne, Paul Davies, and George Ellis. Like many of those who have contributed to the creation of ‘science and religion’ as an academic subject, all of the figures just named fall into the category of religiously committed professional scientists (and in some cases ordained ministers). There are also many historians, philosophers, and theologians who have contributed significantly to the field. It is a topic that even attracts impassioned contributions from scientific atheists, such as Oxford University’s Professor for the Public Understanding of Science, Richard Dawkins.
I have already mentioned that much academic work in this area has been concerned with the plausibility (or lack of it) of the idea of an inevitable conflict between science and religion. This concern is partly driven by apologetic motives. Many of those involved in the field are religious believers committed to showing that science need not undermine faith. But the denial of conflict (or of any other one-dimensional relationship) is also motivated by more purely academic considerations, several of which will emerge in subsequent chapters.
Whether arguing for conflict or for harmony, it could be objected that any talk about ‘the relationship between science and religion’ obscures the true plurality and complexity of the terms. ‘Science’ and ‘religion’ are both hazy categories with blurry boundaries, and different sciences and different religions have clearly related to each other in different ways. Mathematics and astronomy were both particularly nurtured in Islamic cultures in the Middle Ages, for example, where they were used to calculate the correct times of prayer and the direction of Mecca, as well as for many more secular purposes. Islamic scholars working in academies such as the House of Wisdom in Baghdad preserved, tested, and improved upon ancient Greek medicine and optics, as well as astronomy and astrology, between the 9th and the 15th centuries. The motto of these scholars was: ‘Whoever does not know astronomy and anatomy is deficient in the knowledge of God.’ Their works were to be crucial sources for the revival of European learning from the later Middle Ages onwards.
Excluded from more mainstream European academic institutions, Jewish communities formed a particularly strong connection with the science and practice of medicine in early modern Europe. The Roman Catholic Church, despite the high-profile difficulties caused by Galileo’s ideas, was one of the most generous sponsors of scientific research during the Renaissance, especially through the investment of the Jesuit order in astronomical observatories and experimental equipment. The relationship between modern scientific knowledge – a characteristically Western system of thought – and the religious traditions of the East, is different again. Here we might think of the interest shown by Buddhists in neuroscientific studies of the state of the brain during meditation, or of Fritjof Capra’s 1975 bestseller, The Tao of Physics: An Exploration of the Parallels between Modern Physics and Eastern Mysticism. There is, finally, a very particular story to be told about the relationship between evolutionary biology and modern Protestant Christianity – one which we will return to below. The point is that none of these particular relationships can serve as a universal template for understanding engagements between science and religion.
Some think that the extent of oversimplification, generalization, and reification involved in even using the phrase ‘science and religion’ makes it a non-starter as a sensible topic for academic study. I have some sympathy with this view. It is certainly true that in this book, as in most contributions to the field, the ‘religion’ under discussion is most often specifically Christianity. However, at least within the Abrahamic, monotheistic traditions of Judaism, Christianity, and Islam, there is enough common ground, historically, philosophically, and theologically, for a more general discussion to take place. Whether it is possible or desirable to extend that discussion still further to include non-theistic or non-scriptural traditions is another question, and one which I will not explore further here. The monotheistic faiths, however, are all united by the idea that God is the author of two books – the book of nature and the book of scripture – and that the individual believer will find their understanding and their faith strengthened through the careful reading of both books. The intellectual, political, and ethical implications of that shared commitment to reading God’s words and his works have developed in comparable, although far from identical, ways in the three major monotheistic traditions.
The fact that the phrase ‘science and religion’ names an academic field, as well as conjuring up vivid if historically debatable cultural stereotypes, is enough, I think, to justify its continued use as a category of thought (and in the title of this and many other books). Academics and journalists alike continue to write as if there were some ongoing general relationship between science and religion, in terms of which particular contemporary episodes might be understood. Even if that relationship really exists only in our imaginations, it is still important to try to understand how it got there. Since Galileo Galilei and his encounter with the Roman Inquisition takes centre stage in many popular accounts of that relationship, his story is an appropriate place to start our inquiry.
Chapter 2
Galileo and the philosophy of science
When Galileo recanted his Copernicanism in 1633, what did that signify? Was it a victory for religious obscurantism and a defeat for free scientific inquiry? Was it evidence that science and religion are inevitably locked in ideological and institutional combat? Unsurprisingly, there was more to it than that. On all sides of the Galileo case there was agreement that it was proper and rational both to seek accurate knowledge of the world through observation of nature and also to base one’s beliefs on the Bible. The conflict was not between empirical science and authoritarian religion but rather between differing views within the Catholic Church about how to interpret nature and scripture, especially when they seemed to disagree. An appreciation of the exact context of Galileo’s trial, the shadow cast over it by the Protestant Reformation of the previous centu
ry, and the politics of the Papal court at the time all help to explain how these issues took on the dramatic character that they did in 1633, almost a century after Nicolaus Copernicus had argued for a sun-centred astronomy in his book On the Revolutions of the Heavenly Spheres in 1543.
Before coming back to this retelling of the Galileo story as a disagreement among 17th-century Catholics about how to read the Bible, it will be useful to look at some general questions about the sources of knowledge. These will help to make sense both of what was at stake in Rome in June 1633 and also of general questions about the philosophy of science that frequently recur in contemporary debates about science and religion.