Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe

Home > Other > Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe > Page 5
Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe Page 5

by Robert Lanza


  The birth of “Little Bubbles” was a happy occasion, an oasis in this life in the desert. There were many faces that I knew among those who visited her in the hospital room. There was my mother, my sister, and even my father looking on. Bubbles was so kind-hearted and had such a pleasant manner that I should not have been surprised at seeing them all there. How happy she was, and when I sat down by her side on the bed, she asked me—her little brother—if I would be the godfather to her child.

  All this, though, was a short event, and stands like a wildflower along an asphalt road. I wondered on that occasion what cost she might pay for this happiness; I saw it materialize at a later date when her problems reappeared, when her lithium treatments failed. Little by little, her mind began to deteriorate. Her speech made less and less sense, and her actions took on a more bizarre quality. I had seen enough of medicine then to have gained the capacity to stand beside myself, aloof from the consequences of disease, but it was a matter of some emotion to me, even then, to see her child taken away. I have a deep remembrance of her in the hospital, utterly without hope, restrained and sedated with drugs. As I went away from the hospital that day, I mingled my memories of her with tears.

  Bubbles knew of no place anywhere so comforting as the house of our childhood during the rare times of peace, no place half so shady as its green apple trees. They had been planted there more than fifty years ago by my friend Barbara’s dad. On one occasion, long after my parents had sold the house, the new owners saw Bubbles sitting on the sidewalk with her elbows on her knees. The bedroom windows were all open to let in the blossom-scented breeze. Wild roses still dangled from the old trellis on the side of the house.

  “Excuse me, ma’am, you okay?”

  “Yes,” said Bubbles. “I’ll be all right. Is she—is my mother—home?”

  “Your mother doesn’t live here anymore,” said the new owner.

  “Why are you telling me that? It’s a lie.”

  After some squabbling, the new owners called the police, who took Bubbles to the station and notified my mother to fetch her, that she might be taken to the clinic for her shots.

  Despite all that had happened to her, Bubbles was still a very pretty woman, who often drew whistles from the boys in town. But whether she was afraid of the dark or simply got lost, it was not uncommon for her to disappear for a day or two. She was found sleeping in the park once, quite distressed, her hair hanging down in her face. Her clothes were torn, of which she knew as little as we did. But I recall that she was pregnant around a year or two later, and I can only understand that someone may have taken advantage of her again. How well I remember her looking at me in silence and embarrassment, holding the baby in her arms. The infant’s hair was as red as a maple’s in autumn. He had a very cute face and, I thought, did not look like anyone we knew.

  I am uncertain whether I was glad or sorry when at times Bubbles lost even the memory of where she lived. So it was when she was found one night wandering naked in a nearby park. A guard delivered Bubbles to the door of my father’s condominium, announcing, “Your daughter, Mr. Lanza.” My father took her inside and warmed her some coffee in a kettle and supplied her needs graciously. Perhaps this story would have had a different ending if only he had showered her with this kind of affection forty years ago.

  This tale of Bubbles and her relation to me is one that has a thousand variations, told by very many families, of mental illness, delusion, tragedy, interspersed with joyous times. At the twilight of life, reached too quickly by us all, we reflect on our loved ones and it always carries an aura of the unreal, a dream-like nature. “Did that really happen?” we wonder when a particular image comes to mind, especially of a dear one who has long departed. We feel as if we are in a waking reverie, a hall of mirrors, where youth and old age, dream and wakefulness, tragedy and elation, flicker as rapidly as frames of an old silent movie.

  It is precisely here that the priest or philosopher steps in to offer counsel or, as they might call it, hope. Hope, however, is a terrible word; it combines fear with a kind of rooting for one possibility over another, like a gambler watching a spinning roulette wheel whose outcome determines whether or not he will be able to pay his mortgage.

  This, unfortunately, is precisely what science’s prevailing mechanistic mindset comes up with: hope. If life—yours, mine, and Bubbles’s (who is still alive today, under assisted care)—originally began because of random molecular collisions in a matrix of a dead and stupid universe, then watch out. We’re as likely to be screwed as pampered. The dice can and do roll any which way, and we should take whatever good times we’ve had and shut up.

  Truly random events offer neither excitement nor creativity. Not much, at any rate. With life, however, there is a flowering, unfolding, and experiencing that we can’t even wrap our logical minds around. When the whip-poor-will sings his melody in the moonlight, and it is answered by your own heart beating a bit faster in awed appreciation, who in their right mind would say that it was all conjured by imbecilic billiard balls slamming each other by the laws of chance? No observant person would be able to utter such a thing, which is why it always strikes me as slightly amazing that any scientist can aver, with a straight face, that they stand there at the lectern—a conscious, functioning organism with trillions of perfectly functioning parts—as the sole result of falling dice. Our least gesture affirms the magic of life’s design.

  The plays of experience, even seemingly sad and odd ones like that of my sister Bubbles, are never random, nor ultimately scary. Rather, they may be conceived as adventures. Or perhaps as interludes in a melody so vast and eternal that human ears cannot appreciate the tonal range of the symphony.

  In any event, they are certainly not finite. That which is born must die, and we will leave for a later chapter whether the nature of the cosmos is of a finite item with dates of manufacture and expiration, like cupcakes, or whether it is eternal. Accepting the biocentric view means you have cast your lot not just with life itself but with consciousness, which knows neither beginning nor end.

  7

  WHEN TOMORROW COMES BEFORE YESTERDAY

  I think it is safe to say that no one understands quantum mechanics. Do not keep saying to yourself, if you can possibly avoid it, “But how can it be like that?” because you will go “down the drain” into a blind alley from which nobody has yet escaped.

  —Nobel physicist Richard Feynman

  Quantum mechanics describes the tiny world of the atom and its constituents, and their behavior, with stunning if probabilistic accuracy. It is used to design and build much of the technology that drives modern society, such as lasers and advanced computers. But quantum mechanics in many ways threatens not only our essential and absolute notions of space and time but all Newtonian-type conceptions of order and secure prediction.

  It is worthwhile to consider here the old maxim of Sherlock Holmes, that “when you have eliminated the impossible, whatever remains, however improbable, must be the truth.” In this chapter, we will sift through the evidence of quantum theory as deliberately as Holmes might without being thrown off the trail by the prejudices of three hundred years of science. The reason scientists go “down the drain into a blind alley,” is that they refuse to accept the immediate and obvious implications of the experiments. Biocentrism is the only humanly comprehensible explanation for how the world can be like that, and we are unlikely to shed any tears when we leave the conventional ways of thinking. As Nobel Laureate Steven Weinberg put it, “It’s an unpleasant thing to bring people into the basic laws of physics.”

  In order to account for why space and time are relative to the observer, Einstein assigned tortuous mathematical properties to the changing warpages of space-time, an invisible, intangible entity that cannot be seen or touched. Although this was indeed successful in showing how objects move, especially in extreme conditions of strong gravity or fast motion, it resulted in many people assuming that space-time is an actual entity, like cheddar chees
e, rather than a mathematical figment that serves the specific purpose of letting us calculate motion. Space-time, of course, was hardly the first time that mathematical tools have been confused with tangible reality: the square root of minus one and the symbol for infinity are just two of the many mathematically indispensable entities that exist only conceptually—neither has an analog in the physical universe.

  This dichotomy between conceptual and physical reality continued with a vengeance with the advent of quantum mechanics. Despite the central role of the observer in this theory—extending it from space and time to the very properties of matter itself—some scientists still dismiss the observer as an inconvenience, a non-entity.

  In the quantum world, even Einstein’s updated version of Newton’s clock—the solar system as predictable if complex timekeeper—fails to work. The very concept that independent events can happen in separate non-linked locations—a cherished notion often called locality—fails to hold at the atomic level and below, and there’s increasing evidence it extends fully into the macroscopic as well. In Einstein’s theory, events in space-time can be measured in relation to each other, but quantum mechanics calls greater attention to the nature of measurement itself, one that threatens the very bedrock of objectivity.

  When studying subatomic particles, the observer appears to alter and determine what is perceived. The presence and methodology of the experimenter is hopelessly entangled with whatever he is attempting to observe and what results he gets. An electron turns out to be both a particle and a wave, but how and, more importantly, where such a particle will be located remains dependent upon the very act of observation.

  This was new indeed. Pre-quantum physicists, reasonably assuming an external, objective universe, expected to be able to determine the trajectory and position of individual particles with certainty—the way we do with planets. They assumed the behavior of particles would be completely predictable if everything was known at the outset—that there was no limit to the accuracy with which they could measure the physical properties of an object of any size, given adequate technology.

  In addition to quantum uncertainty, another aspect of modern physics also strikes at the core of Einstein’s concept of discrete entities and space-time. Einstein held that the speed of light is constant and that events in one place cannot influence events in another place simultaneously. In the relativity theories, the speed of light has to be taken into account for information to travel from one particle to another. This has been demonstrated to be true for nearly a century, even when it comes to gravity spreading its influence. In a vacuum, 186,282.4 miles per second was the law. However, recent experiments have shown that this is not the case with every kind of information propagation.

  Perhaps the true weirdness started in 1935 when physicists Einstein, Podolsky, and Rosen dealt with the strange quantum curiosity of particle entanglement, in a paper so famous that the phenomenon is still often called an “EPR correlation.” The trio dismissed quantum theory’s prediction that a particle can somehow “know” what another one that is thoroughly separated in space is doing, and attributed any observations along such lines to some as-yet-unidentified local contamination rather than to what Einstein derisively called “spooky action at a distance.”

  This was a great one-liner, right up there with the small handful of sayings the great physicist had popularized, such as “God does not play dice.” It was yet another jab at quantum theory, this time at its growing insistence that some things only existed as probabilities, not as actual objects in real locations. This phrase, “spooky action at a distance,” was repeated in physics classrooms for decades. It helped keep the true weirdnesses of quantum theory buried below the public consciousness. Given that experimental apparatuses were still relatively crude, who dared to say that Einstein was wrong?

  But Einstein was wrong. In 1964, Irish physicist John Bell proposed an experiment that could show if separate particles can influence each other instantaneously over great distances. First, it is necessary to create two bits of matter or light that share the same wave-function (recalling that even solid particles have an energy- wave nature). With light, this is easily done by sending light into a special kind of crystal; two photons of light then emerge, each with half the energy (twice the wavelength) of the one that went in, so there is no violation of the conservation of energy. The same amount of total power goes out as went in.

  Now, because quantum theory tells us that everything in nature has a particle nature and a wave nature, and that the object’s behavior exists only as probabilities, no small object actually assumes a particular place or motion until its wave-function collapses. What accomplishes this collapse? Messing with it in any way. Hitting it with a bit of light in order to “take its picture” would instantly do the job. But it became increasingly clear that any possible way the experimenter could take a look at the object would collapse the wave-function. At first, this look was assumed to be the need to, say, shoot a photon at an electron in order to measure where it is, and the realization that the resulting interaction between the two would naturally collapse the wave-function. In a sense, the experiment had been contaminated. But as more sophisticated experiments were devised (see the next chapter), it became obvious that mere knowledge in the experimenter’s mind is sufficient to cause the wave-function to collapse.

  That was freaky, but it got worse. When entangled particles are created, the pair share a wave-function. When one member’s wave-function collapses, so will the other’s—even if they are separated by the width of the universe. This means that if one particle is observed to have an “up spin,” the other instantly goes from being a mere probability wave to an actual particle with the opposite spin. They are intimately linked, and in a way that acts as if there’s no space between them, and no time influencing their behavior.

  Experiments from 1997 to 2007 have shown that this is indeed the case, as if tiny objects created together are endowed with a kind of ESP. If a particle is observed to make a random choice to go one way instead of another, its twin will always exhibit the same behavior (actually the complementary action) at the same moment—even if the pair are widely separated.

  In 1997, Swiss researcher Nicholas Gisin truly started the ball rolling down this peculiar bowling lane by concocting a particularly startling demonstration. His team created entangled photons or bits of light and sent them flying seven miles apart along optical fibers. One encountered an interferometer where it could take one of two paths, always chosen randomly. Gisin found that whichever option a photon took, its twin would always make the other choice instantaneously.

  The momentous adjective here is instantaneous. The second photon’s reaction was not even delayed by the time light could have traversed those seven miles (about twenty-six milliseconds) but instead occurred less than three ten-billionths of a second later, the limit of the testing apparatus’s accuracy. The behavior is presumed to be simultaneous.

  Although predicted by quantum mechanics, the results continue to astonish even the very physicists doing the experiments. It substantiates the startling theory that an entangled twin should instantly echo the action or state of the other, even if separated by any distance whatsoever, no matter how great.

  This is so outrageous that some have sought an escape clause. A prominent candidate has been the “detector deficiency loophole,” the argument that experiments to date had not caught sufficient numbers of photon-twins. Too small a percentage had been observed by the equipment, critics suggested, somehow preferentially revealing just those twins that behaved in synch. But a newer experiment in 2002 effectively closed that loophole. In a paper published in Nature by a team of researchers from the National Institute of Standards and Technology led by Dr. David Wineland, entangled pairs of beryllium ions and a high-efficiency detector proved that, yes, each really does simultaneously echo the actions of its twin.

  Few believe that some new, unknown force or interaction is being transmitted with zero tra
vel time from one particle to its twin. Rather, Wineland told one of the authors, “There is some spooky action at a distance.” Of course, he knew that this is no explanation at all.

  Most physicists argue that relativity’s insuperable lightspeed limit is not being violated because nobody can use EPR correlations to send information because the behavior of the sending particle is always random. Current research is directed toward practical rather than philosophical concerns: the aim is to harness this bizarre behavior to create new ultra-powerful quantum computers that, as Wineland put it, “carry all the weird baggage that comes with quantum mechanics.”

  Through it all, the experiments of the past decade truly seem to prove that Einstein’s insistence on “locality”—meaning that nothing can influence anything else at superluminal speeds—is wrong. Rather, the entities we observe are floating in a field—a field of mind, biocentrism maintains—that is not limited by the external space-time Einstein theorized a century ago.

  No one should imagine that when biocentrism points to quantum theory as one major area of support, it is just a single aspect of quantum phenomena. Bell’s Theorem of 1964, shown experimentally to be true over and over in the intervening years, does more than merely demolish all vestiges of Einstein’s (and others’) hopes that locality can be maintained.

  Before Bell, it was still considered possible (though increasingly iffy) that local realism—an objective independent universe—could be the truth. Before Bell, many still clung to the millennia-old assumption that physical states exist before they are measured. Before Bell, it was still widely believed that particles have definite attributes and values independent of the act of measuring. And, finally, thanks to Einstein’s demonstrations that no information can travel faster than light, it was assumed that if observers are sufficiently far apart, a measurement by one has no effect on the measurement by the other.

 

‹ Prev