by Robert Lanza
A few weeks ago—almost three years after Dennis fell—his son Ben was in a football game (he’s now on the high school football team). After Ben scored a touchdown, the parents in the bleachers went wild. Ben knew his dad would be proud.
Ben just turned sixteen years old, and of course he had one thing on his mind—what car he was going to drive after he got his license. Dennis had led him to believe he was going to get the old Explorer, which had almost 200,000 miles on the odometer. “Dad,” Ben had asked, “you’re not going to give me the ‘Exploder,’ are you?” At Ben’s birthday party last night, Dennis surprised him and gave him the keys to his own car, which has all sorts of options, and even heated seats. He’s out there washing the dirt off it right now.
Our current scientific worldview offers no hope or escape for those scared to death of dying. But biocentrism hints at an alternative. If time is an illusion, if reality is created by our own consciousness, can this consciousness ever truly be extinguished?
15
BUILDING BLOCKS OF CREATION
I had just published a scientific paper showing for the first time that it was possible to generate an important type of cell in the eye that could be used to treat blindness. I was on my way to work the following morning—late as usual—and admittedly going a lot faster than the posted fifteen miles per hour as I swung into the entrance of the parking lot. At about that moment, I had a rush of adrenaline as I stepped on my brakes, swerving around a police cruiser that had stopped to question a pedestrian. “What unbelievably awful luck that the car happened to be a cruiser,” I thought, certain I was about to be arrested. I continued into the lot, parking in the far corner and hoping the officer had been too occupied to notice or come after me. With my heart still racing, I hurried into the building. “Thank God,” I thought, as I glanced over my shoulder, “there’s no sign of the officer in pursuit.”
Once safely in my office, I had calmed down and started to work when I heard a knock on my door. It was Young Chung, one of the senior scientists who works for me. “Dr. Lanza,” he said with panic in his voice, “there is a police officer at the reception desk who wants to see you. He has handcuffs and a gun.”
There was a little stir in the lab as I went out to greet the policeman standing there in his uniform. I think my colleagues were fearful he was going to take me away in handcuffs. “Doctor,” he said in a serious voice, “can we speak in your office?”
“It must be really bad,” I thought to myself. But once in my office, he apologized and asked if I had time to speak with him about the breakthrough he had just read about in the Wall Street Journal (in fact, he had stopped the pedestrian in the parking lot to ask where the company was located). He explained that he was part of a group of parents who communicate with each other over the Internet about new medical breakthroughs that might help their children. He came on behalf of the group when he learned that I happened to be located in the same city, Worcester, Massachusetts.
It turned out that his teenage son had a severe degenerative eye disease, and that his doctors expected him to become blind in a couple of years. He also told me about a relative in the family who also developed the disease at about the same age—and who is now totally blind. He pointed to a cardboard box on the floor of my office, and said, “Right now, my son can still make out the outline of the box. But the clock is ticking . . .”
By the time he had finished his story, I was nearly in tears. It was particularly difficult to take, especially knowing that I had frozen cells put away that could have helped treat his son. The cells had just been sitting in the freezer in a box for more than nine months. We didn’t have the $20,000 we needed to carry out the animal experiments we needed to show they could work (the amount the military sometimes pays for a hammer). Unfortunately, it would be another year or two before we would have the resources needed to show that the cells—the same human cells that would be used in patients—could rescue visual function in animals that otherwise would have gone blind. Indeed, improvement in visual performance—that is, sharpness of vision—was 100 percent better than untreated controls without any apparent adverse effects. Currently (while this book is being written), we’re involved in a dialogue with the FDA on beginning actual clinical trials in patients with retinal degenerative diseases, including macular degeneration, which affects more than 30 million people worldwide.
But there is an aspect to these cells that is even more amazing than preventing blindness. In the same petri dishes as these retinal cells, we also see the formation of photoreceptors—that is, the cones and rods we see with—and even miniature “eye-balls” that look like they’re staring at you up the barrel of the microscope. In all of these experiments, we start out with embryonic stem cells—the body’s master cells—which make all kinds of nerve cells spontaneously, almost by default. They are the first types of human body cells they want to make. In fact, some of the neurons I’ve seen growing in the laboratory have thousands of dendritic processes, with which they communicate to their neighbor cells, which are so extensive you would need to take a dozen different photographs to capture the image of a single cell.
From a biocentric viewpoint, these nerve cells are the fundamental units of reality. They are the first thing nature seems to want most to create when left alone. Neurons—not atoms—lie as the bedrock and base of our observer-determined world.
The circuitry of these cells in the brain contains the logic of space and time. They are the neuro-correlate of the mind and connect to the peripheral nervous system and sense organs of the body, including the photoreceptors growing in my petri dishes. Thus, they embrace everything we can ever observe, just like a DVD player sends information to a television screen when someone watches a movie. When we observe the words printed in a book, its paper, seemingly a foot away, is not being perceived—the image, the paper, is the perception—and as such, it is contained in the logic of this neurocircuitry. A correlative reality encompasses everything, with only language providing separation between external and internal, between there and here. Is this matrix of neurons and atoms fashioned in an energy field of Mind?
The millennia-old attempt to understand the nature of the cosmos has been a very odd, precarious undertaking. Science is currently our main tool, but help sometimes arrives in unexpected form. I remember a very ordinary day when everyone else was still asleep or already at the hospital making morning rounds. “It doesn’t matter,” I thought, as I filled my cup with coffee, the steam condensing on the kitchen window. “I’m already late.” I scraped off a patch of ice crystals. Through the clear area, I could see the underlying apparatus of the trees lining the road. The early morning sun slanted down, throwing into gleaming brightness the bare twigs and a little patch of dead leaves. There was a feeling of mystery contained in that scene, a powerful feeling that something was veiled behind it, something that was not accounted for in the scientific journals.
I put on my white lab jacket, and over the protests of my body, set off on my way to the university. As I strolled toward the hospital, I had some curious impulse to detour around the campus pond. Perhaps I was postponing seeing only harsh-etched things, now during the singular magic of morning. The sight of the stainless-steel machines, perhaps, or the stark lights in the operating room, the emergency oxygen cylinders, the blips on the oscilloscope screen. It was this that had brought me to pause at the edge of the pond, in undisturbed quiet and solitude, when at the hospital the bustle of activity and excited voices was in full swing. Thoreau would have approved. He had always considered morning as a cheerful invitation to make his life of simplicity. “Poetry and art,” he wrote, “and the fairest and most memorable of the actions of men, date from such an hour.”
It was a comforting experience on a cold winter day, to stand there overlooking the pond, and watch the photons dancing on its surface like so many notes from Mahler’s Ninth Symphony. For an instant, my body was beyond being affected by the elements, and my mind merged with the whole
of nature as much as it has ever been in my life. It was really a very small episode, as are most meaningful things. But in that unassuming calm I had seen beyond the pads and the cattails. I had felt Nature, naked and unclothed, as she was for Loren Eiseley and Thoreau. I rounded the pond and headed to the hospital. Morning rounds were nearly finished. A dying woman sat on the bed before me. Outside, a songbird had its trill, sitting on a limb over the pond.
Later on, I thought of the deeper secret denied me at earliest dawn, when I had peeped through that little ice-crystal hole into the morning. “We are too content with our sense organs,” Loren Eiseley once said. It is not sufficient to watch at the end of a nerve the dancing of photons. “It is no longer enough to see as a man sees—even to the ends of the universe.” Our radio telescopes and supercolliders merely extend the perceptions of our mind. We see the finished work only. We do not see how things stand in community with each other as parts of a real whole, save for a space of perhaps five seconds on some glorious December morning when all the senses are one.
Of course, the physicists will not understand, just as they cannot see behind the equations of quantum reality. These are the variables that, standing on the edge of the pond in such a day in December, merge the mind with the whole of nature, that lurk concealed behind every leaf and twig.
We scientists have looked at the world for so long that we no longer challenge its reality. As Thoreau pointed out, we are like the Hindus, who conceived of the world as resting on the back of an elephant, the elephant on the back of a tortoise, and the tortoise on a serpent, and had nothing to put under the serpent. We all stand on the shoulders of one another—and all together on nothing.
For myself, five seconds on a winter’s morning is the most convincing evidence I should ever need. As Thoreau had said of Walden: I am its stony shore,
And the breeze that passes o’er;
In the hollow of my hand
Are its water and its sand . . .
16
WHAT IS THIS PLACE? RELIGION, SCIENCE, AND BIOCENTRISM LOOK AT REALITY
The last several chapters discussed the makeup and structure of the universe. It’s amazing that we humans have the capacity to do this at all. One day, we each found ourselves alive and aware and, around the age of two in most cases, an ongoing memory track started recording selective inputs. In fact, years ago I carried out a series of experiments with B.F. Skinner (which we published in Science ) that showed even animals are capable of “self-awareness.” At some point in childhood, most people eventually ask themselves, “Hey! What is this place?” It isn’t enough for us to just be aware. We want to know why, what, and how existence is the way it is.
We were still children when we started to be bombarded by competing answers. Church said one thing, school another. Now, as adults, it’s no surprise that if we discuss The Nature Of It All, we generally spout some combination of the two, depending on our individual inclination and mood.
We may struggle with attempts at merging science and religion, when, for instance, we watch the Christmas planetarium show, Star of Wonder, which purports to find logical explanations for the Star of Bethlehem. This is also seen in such best-selling books as The Tao of Physics and The Dancing Wu-Lei Masters, which purport to show that modern physics says the same thing as Buddhism.
By and large, however, such efforts are futile and even trashy, even if they are popular. Actual physicists insist The Tao of Physics doesn’t talk about the actual science, but a barely recognizable flower-child version. The annual planetarium Christmas presentations, for their part, dishonor both religion and astronomy because all planetarium directors know that no natural object in the sky, whether conjunction, comet, planet, or supernova, can come to a screeching halt over Bethlehem or anywhere else. Only an object in the northern sky, the North Star itself, can appear to be motionless. But the Magi weren’t going north but southwest to get to Bethlehem. Bottom line: none of the offered explanations work. The directors know this, yet offer them anyway, because such shows have been well-attended holiday traditions for three-quarters of a century. Meanwhile, on the religious side of things, those who take the “star” story literally are being told that no miracle unfolded; it was merely some brilliant conjunction of planets that happened to occur at just the right time and come to a halt in the sky—as if this in itself wouldn’t be indistinguishable from a miracle. (If one doesn’t mind a digression here and happens to be curious about the answer, the explanation of the “star” almost certainly belongs to neither science nor religion. What’s left? At the time, the births of great kings were superstitiously believed to be accompanied by astrological omens, and when the Biblical account was written, a full lifetime after the event, someone clearly thought Jesus deserved no less. Because Jupiter was in Aries—the “ruling sign” of Judea—at the probable time of Jesus’s birth, an excellent match existed. So the story was astrological in origin—an explanation that would currently sit far out of favor with both science and Christianity, and hence gets little mention by either.)
Because science and religion make odd bedfellows whose offspring is usually malformed, let’s keep them properly separated as we summarize the various widely accepted answers to the most basic questions of existence: What is this universe? What is the relation of the living to the non-living? Is the Great Computer’s basic operating system random or is it intelligent? Is it fathomable by the human mind? While we’re at it, let’s also review the fundamental questions with which each view has chosen to intertwine themselves, and then see whether these selected areas of emphasis, at least, have been answered successfully.
Classic Science’s Basic Take on the Cosmos
Everything started 13.7 billion years ago when the entire universe materialized out of nothingness. Expanding ever since, first rapidly, then more slowly, the expansion started speeding up once again some 7 billion years ago due to an unknown repulsive force, which is the main constituent of the cosmos. All structures and events are created entirely randomly, given the four fundamental forces and a host of parameters and constants such as the universal pull of gravity. Life began 3.9 billion years ago on Earth and possibly elsewhere at unknown times. It too occurred by the random collisions of molecules, which in turn are made of combinations of one or more of the ninety-two natural elements. Consciousness or awareness arose out of life in a manner that remains mysterious.
Classic Science’s Answers to Basic Questions
How did the Big Bang happen?
Unknown.
What was the Big Bang?
Unknown.
What, if anything, existed before the Big Bang?
Unknown.
What is the nature of dark energy, the dominant entity of the cosmos?
Unknown.
What is the nature of dark matter, the second most prevalent entity?
Unknown.
How did life arise?
Unknown.
How did consciousness arise?
Unknown.
What is the nature of consciousness?
Unknown.
What is the fate of the universe; for example, will it keep expanding?
Seemingly yes.
Why are the constants the way they are?
Unknown.
Why are there exactly four forces?
Unknown.
Is life further experienced after one’s body dies?
Unknown.
Which book provides the best answers?
There is no single book.
Okay, so what can science tell us? A lot—libraries full of knowledge. All of it has to do with classifications and sub-classifications of all manner of objects, living and non-living, and categorizations of their properties, such as the ductility and strength of steel versus copper, and how processes work, such as how stars are born and how viruses replicate. In short, science seeks to discover the properties and processes within the cosmos. How to form metals into bridges, how to build an airplane, how to perform recon
structive surgery—science is peerless at things we need to make everyday life easier.
So those who ask science to provide the ultimate answers or to explain the fundamentals of existence are looking in the wrong place—it’s like asking particle physics to evaluate art. Scientists do not admit to this, however. Branches of science such as cosmology act as if science can indeed provide answers in the deepest bedrock areas of inquiry, and its success in the established pantheon of other endeavors have let all of us say, “Go ahead, give it a go.” But thus far, it has had little or no success.
Religion’s Take on the Cosmos
Needless to say, there are many religions, and we’re not about to get into their endless distinctions. But two general schools exist, each with billions of adherents. They are so oceanically distinct in outlook and stated goals that they must be treated separately.
Western Religions (Christianity, Judaism, Islam)
The universe is entirely a creation of God, who stands apart from it. It had a distinct birth date and will have an end. Life was also created by God. The most critical purposes of life are twofold: to have faith in God and to be obedient to God’s rules, such as the Ten Commandments and other rules as outlined in the Bible or the Koran, which are generally regarded as the sole source of total truth. Christianity generally says that acceptance of Jesus Christ as savior is necessary as well—all with the goal of experiencing heaven (or being “saved,” as opposed to being damned) because the afterlife is what ultimately matters. God is omniscient, omnipotent, and omnipresent, the creator and sustainer of the universe. He can be contacted through prayer. No mention is made of other states of consciousness, nor of consciousness itself, nor of direct personal experience of finding an ultimate reality, except in mystical sects, where the exalted state is generally termed “Union with God.”