by Aristotle
(2) If there is a single identical definition i.e. if the commensurate universal is unequivocal-then the universal will possess being not less but more than some of the particulars, inasmuch as it is universals which comprise the imperishable, particulars that tend to perish.
(3) Because the universal has a single meaning, we are not therefore compelled to suppose that in these examples it has being as a substance apart from its particulars-any more than we need make a similar supposition in the other cases of unequivocal universal predication, viz. where the predicate signifies not substance but quality, essential relatedness, or action. If such a supposition is entertained, the blame rests not with the demonstration but with the hearer.
(4) Demonstration is syllogism that proves the cause, i.e. the reasoned fact, and it is rather the commensurate universal than the particular which is causative (as may be shown thus: that which possesses an attribute through its own essential nature is itself the cause of the inherence, and the commensurate universal is primary; hence the commensurate universal is the cause). Consequently commensurately universal demonstration is superior as more especially proving the cause, that is the reasoned fact.
(5) Our search for the reason ceases, and we think that we know, when the coming to be or existence of the fact before us is not due to the coming to be or existence of some other fact, for the last step of a search thus conducted is eo ipso the end and limit of the problem. Thus: 'Why did he come?' 'To get the money-wherewith to pay a debt-that he might thereby do what was right.' When in this regress we can no longer find an efficient or final cause, we regard the last step of it as the end of the coming-or being or coming to be-and we regard ourselves as then only having full knowledge of the reason why he came.
If, then, all causes and reasons are alike in this respect, and if this is the means to full knowledge in the case of final causes such as we have exemplified, it follows that in the case of the other causes also full knowledge is attained when an attribute no longer inheres because of something else. Thus, when we learn that exterior angles are equal to four right angles because they are the exterior angles of an isosceles, there still remains the question 'Why has isosceles this attribute?' and its answer 'Because it is a triangle, and a triangle has it because a triangle is a rectilinear figure.' If rectilinear figure possesses the property for no further reason, at this point we have full knowledge-but at this point our knowledge has become commensurately universal, and so we conclude that commensurately universal demonstration is superior.
(6) The more demonstration becomes particular the more it sinks into an indeterminate manifold, while universal demonstration tends to the simple and determinate. But objects so far as they are an indeterminate manifold are unintelligible, so far as they are determinate, intelligible: they are therefore intelligible rather in so far as they are universal than in so far as they are particular. From this it follows that universals are more demonstrable: but since relative and correlative increase concomitantly, of the more demonstrable there will be fuller demonstration. Hence the commensurate and universal form, being more truly demonstration, is the superior.
(7) Demonstration which teaches two things is preferable to demonstration which teaches only one. He who possesses commensurately universal demonstration knows the particular as well, but he who possesses particular demonstration does not know the universal. So that this is an additional reason for preferring commensurately universal demonstration. And there is yet this further argument:
(8) Proof becomes more and more proof of the commensurate universal as its middle term approaches nearer to the basic truth, and nothing is so near as the immediate premiss which is itself the basic truth. If, then, proof from the basic truth is more accurate than proof not so derived, demonstration which depends more closely on it is more accurate than demonstration which is less closely dependent. But commensurately universal demonstration is characterized by this closer dependence, and is therefore superior. Thus, if A had to be proved to inhere in D, and the middles were B and C, B being the higher term would render the demonstration which it mediated the more universal.
Some of these arguments, however, are dialectical. The clearest indication of the precedence of commensurately universal demonstration is as follows: if of two propositions, a prior and a posterior, we have a grasp of the prior, we have a kind of knowledge-a potential grasp-of the posterior as well. For example, if one knows that the angles of all triangles are equal to two right angles, one knows in a sense-potentially-that the isosceles' angles also are equal to two right angles, even if one does not know that the isosceles is a triangle; but to grasp this posterior proposition is by no means to know the commensurate universal either potentially or actually. Moreover, commensurately universal demonstration is through and through intelligible; particular demonstration issues in sense-perception.
25
The preceding arguments constitute our defence of the superiority of commensurately universal to particular demonstration. That affirmative demonstration excels negative may be shown as follows.
(1) We may assume the superiority ceteris paribus of the demonstration which derives from fewer postulates or hypotheses-in short from fewer premisses; for, given that all these are equally well known, where they are fewer knowledge will be more speedily acquired, and that is a desideratum. The argument implied in our contention that demonstration from fewer assumptions is superior may be set out in universal form as follows. Assuming that in both cases alike the middle terms are known, and that middles which are prior are better known than such as are posterior, we may suppose two demonstrations of the inherence of A in E, the one proving it through the middles B, C and D, the other through F and G. Then A-D is known to the same degree as A-E (in the second proof), but A-D is better known than and prior to A-E (in the first proof); since A-E is proved through A-D, and the ground is more certain than the conclusion.
Hence demonstration by fewer premisses is ceteris paribus superior. Now both affirmative and negative demonstration operate through three terms and two premisses, but whereas the former assumes only that something is, the latter assumes both that something is and that something else is not, and thus operating through more kinds of premiss is inferior.
(2) It has been proved that no conclusion follows if both premisses are negative, but that one must be negative, the other affirmative. So we are compelled to lay down the following additional rule: as the demonstration expands, the affirmative premisses must increase in number, but there cannot be more than one negative premiss in each complete proof. Thus, suppose no B is A, and all C is B. Then if both the premisses are to be again expanded, a middle must be interposed. Let us interpose D between A and B, and E between B and C. Then clearly E is affirmatively related to B and C, while D is affirmatively related to B but negatively to A; for all B is D, but there must be no D which is A. Thus there proves to be a single negative premiss, A-D. In the further prosyllogisms too it is the same, because in the terms of an affirmative syllogism the middle is always related affirmatively to both extremes; in a negative syllogism it must be negatively related only to one of them, and so this negation comes to be a single negative premiss, the other premisses being affirmative. If, then, that through which a truth is proved is a better known and more certain truth, and if the negative proposition is proved through the affirmative and not vice versa, affirmative demonstration, being prior and better known and more certain, will be superior.
(3) The basic truth of demonstrative syllogism is the universal immediate premiss, and the universal premiss asserts in affirmative demonstration and in negative denies: and the affirmative proposition is prior to and better known than the negative (since affirmation explains denial and is prior to denial, just as being is prior to not-being). It follows that the basic premiss of affirmative demonstration is superior to that of negative demonstration, and the demonstration which uses superior basic premisses is superior.
(4) Affirmative demonstration is more of t
he nature of a basic form of proof, because it is a sine qua non of negative demonstration.
26
Since affirmative demonstration is superior to negative, it is clearly superior also to reductio ad impossibile. We must first make certain what is the difference between negative demonstration and reductio ad impossibile. Let us suppose that no B is A, and that all C is B: the conclusion necessarily follows that no C is A. If these premisses are assumed, therefore, the negative demonstration that no C is A is direct. Reductio ad impossibile, on the other hand, proceeds as follows. Supposing we are to prove that does not inhere in B, we have to assume that it does inhere, and further that B inheres in C, with the resulting inference that A inheres in C. This we have to suppose a known and admitted impossibility; and we then infer that A cannot inhere in B. Thus if the inherence of B in C is not questioned, A's inherence in B is impossible.
The order of the terms is the same in both proofs: they differ according to which of the negative propositions is the better known, the one denying A of B or the one denying A of C. When the falsity of the conclusion is the better known, we use reductio ad impossible; when the major premiss of the syllogism is the more obvious, we use direct demonstration. All the same the proposition denying A of B is, in the order of being, prior to that denying A of C; for premisses are prior to the conclusion which follows from them, and 'no C is A' is the conclusion, 'no B is A' one of its premisses. For the destructive result of reductio ad impossibile is not a proper conclusion, nor are its antecedents proper premisses. On the contrary: the constituents of syllogism are premisses related to one another as whole to part or part to whole, whereas the premisses A-C and A-B are not thus related to one another. Now the superior demonstration is that which proceeds from better known and prior premisses, and while both these forms depend for credence on the not-being of something, yet the source of the one is prior to that of the other. Therefore negative demonstration will have an unqualified superiority to reductio ad impossibile, and affirmative demonstration, being superior to negative, will consequently be superior also to reductio ad impossibile.
27
The science which is knowledge at once of the fact and of the reasoned fact, not of the fact by itself without the reasoned fact, is the more exact and the prior science.
A science such as arithmetic, which is not a science of properties qua inhering in a substratum, is more exact than and prior to a science like harmonics, which is a science of pr,operties inhering in a substratum; and similarly a science like arithmetic, which is constituted of fewer basic elements, is more exact than and prior to geometry, which requires additional elements. What I mean by 'additional elements' is this: a unit is substance without position, while a point is substance with position; the latter contains an additional element.
28
A single science is one whose domain is a single genus, viz. all the subjects constituted out of the primary entities of the genus-i.e. the parts of this total subject-and their essential properties.
One science differs from another when their basic truths have neither a common source nor are derived those of the one science from those the other. This is verified when we reach the indemonstrable premisses of a science, for they must be within one genus with its conclusions: and this again is verified if the conclusions proved by means of them fall within one genus-i.e. are homogeneous.
29
One can have several demonstrations of the same connexion not only by taking from the same series of predication middles which are other than the immediately cohering term e.g. by taking C, D, and F severally to prove A-B--but also by taking a middle from another series. Thus let A be change, D alteration of a property, B feeling pleasure, and G relaxation. We can then without falsehood predicate D of B and A of D, for he who is pleased suffers alteration of a property, and that which alters a property changes. Again, we can predicate A of G without falsehood, and G of B; for to feel pleasure is to relax, and to relax is to change. So the conclusion can be drawn through middles which are different, i.e. not in the same series-yet not so that neither of these middles is predicable of the other, for they must both be attributable to some one subject.
A further point worth investigating is how many ways of proving the same conclusion can be obtained by varying the figure,
30
There is no knowledge by demonstration of chance conjunctions; for chance conjunctions exist neither by necessity nor as general connexions but comprise what comes to be as something distinct from these. Now demonstration is concerned only with one or other of these two; for all reasoning proceeds from necessary or general premisses, the conclusion being necessary if the premisses are necessary and general if the premisses are general. Consequently, if chance conjunctions are neither general nor necessary, they are not demonstrable.
31
Scientific knowledge is not possible through the act of perception. Even if perception as a faculty is of 'the such' and not merely of a 'this somewhat', yet one must at any rate actually perceive a 'this somewhat', and at a definite present place and time: but that which is commensurately universal and true in all cases one cannot perceive, since it is not 'this' and it is not 'now'; if it were, it would not be commensurately universal-the term we apply to what is always and everywhere. Seeing, therefore, that demonstrations are commensurately universal and universals imperceptible, we clearly cannot obtain scientific knowledge by the act of perception: nay, it is obvious that even if it were possible to perceive that a triangle has its angles equal to two right angles, we should still be looking for a demonstration-we should not (as some say) possess knowledge of it; for perception must be of a particular, whereas scientific knowledge involves the recognition of the commensurate universal. So if we were on the moon, and saw the earth shutting out the sun's light, we should not know the cause of the eclipse: we should perceive the present fact of the eclipse, but not the reasoned fact at all, since the act of perception is not of the commensurate universal. I do not, of course, deny that by watching the frequent recurrence of this event we might, after tracking the commensurate universal, possess a demonstration, for the commensurate universal is elicited from the several groups of singulars.
The commensurate universal is precious because it makes clear the cause; so that in the case of facts like these which have a cause other than themselves universal knowledge is more precious than sense-perceptions and than intuition. (As regards primary truths there is of course a different account to be given.) Hence it is clear that knowledge of things demonstrable cannot be acquired by perception, unless the term perception is applied to the possession of scientific knowledge through demonstration. Nevertheless certain points do arise with regard to connexions to be proved which are referred for their explanation to a failure in sense-perception: there are cases when an act of vision would terminate our inquiry, not because in seeing we should be knowing, but because we should have elicited the universal from seeing; if, for example, we saw the pores in the glass and the light passing through, the reason of the kindling would be clear to us because we should at the same time see it in each instance and intuit that it must be so in all instances.
32
All syllogisms cannot have the same basic truths. This may be shown first of all by the following dialectical considerations. (1) Some syllogisms are true and some false: for though a true inference is possible from false premisses, yet this occurs once only-I mean if A for instance, is truly predicable of C, but B, the middle, is false, both A-B and B-C being false; nevertheless, if middles are taken to prove these premisses, they will be false because every conclusion which is a falsehood has false premisses, while true conclusions have true premisses, and false and true differ in kind. Then again, (2) falsehoods are not all derived from a single identical set of principles: there are falsehoods which are the contraries of one another and cannot coexist, e.g. 'justice is injustice', and 'justice is cowardice'; 'man is horse', and 'man is ox'; 'the equal is greater', and 'the equal
is less.' From established principles we may argue the case as follows, confining-ourselves therefore to true conclusions. Not even all these are inferred from the same basic truths; many of them in fact have basic truths which differ generically and are not transferable; units, for instance, which are without position, cannot take the place of points, which have position. The transferred terms could only fit in as middle terms or as major or minor terms, or else have some of the other terms between them, others outside them.
Nor can any of the common axioms-such, I mean, as the law of excluded middle-serve as premisses for the proof of all conclusions. For the kinds of being are different, and some attributes attach to quanta and some to qualia only; and proof is achieved by means of the common axioms taken in conjunction with these several kinds and their attributes.